
 

FILE OPERATIONS 

2R Sim is capable of reading and writing .2r files, which contain the complete description of a specific simulation 

model: 

1. The model’s equation. 

2. All the variables and their corresponding probability distribution where appropriate, along with the 

pertinent parameters. 

3. The correlation matrix. 

These files are the means for 2R Sim users to save their work, as well as the medium of distribution of models that 

could be of interest to other 2R Sim users. 

SAVING MODELS 

Even if a model isn’t yet complete, a user can decide to save its information for later use. In order to do this, the 

user must navigate through the File menu and select the Save or Save As… option: 

 

The difference between Save and Save As… is that, while Save will only ask for the file’s name and destination 

once and will then overwrite that same file on any subsequent uses, Save As… will ask for the file’s name and 

destination every time it is invoked. Thus, Save As… is to be used whenever a user wants to save modifications 

made to a file without modifying the base file. 

 

OPENING MODELS  

In order to load the information contained inside a .2r file, the user must navigate through the File menu and 

select the Open option: 

 

If no errors occur, the loaded model is shown in the Main tab (equation, variables, and correlation matrix). 



BASICS 

GRAPHS 

All of the graphs generated in 2R Soft provide a wide array of options in the form of a context menu. The context 

menu appears when you right-click over a graph: 

 

PROPERTIES PANE 

If you select the Properties… option, a properties pane appears. The properties pane lets you change the graph 

title, axis names, axis ranges, and font size. 

 

 

 

 



COPY AND SAVE AS…  

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft 

Word, Microsoft PowerPoint, etc). 

Meanwhile, if Save As… is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting 

the desired output folder and file name: 

 

PRINT 

The Print option does just that: it sends the graph to the printer of your choice (local or networked): 

 

SCALE OPTIONS 

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is 

needed for an axis, we highly recommend the Properties Pane. 



MANUAL ZOOM IN 

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you’re interested in a specific 

region, hold your left-click and drag the mouse to generate a highlighted box around that region: 

 

The end result: 

 

EQUATION EDITOR 

User-entered equations are common in 2R Soft. This section of the document explains the use of the equation 

editor. 

FUNCTIONS AND OPERATIONS 

Equations can contain the following functions and operations: 

Function/Op. Description Usage (A and B are declared variables or 
numeric values) 

+ Addition. A+B 
Example: 4+7=11 

- Subtraction. A-B 
Example: 4-7=-3 

* Multiplication. A*B 
Example: 4*7=28 

/ Division. A/B  
Example: 6/4=1.5 

^ Returns the value of the first operand raised to the power of the 
second operand. (Microsystems) 

A^B 
Example: 5^3=125 
Example: 5^(-3)=1/125 

% Modulo operation. Divides the value of one expression by the value 
of another, and returns the remainder. (MSDN) 

A%B 
Example: 7%3=1 
Example: 67%10=7 

cos Returns the trigonometric cosine of an angle. (Microsystems) cos(A), where A is in radians 
Example: cos(3.14)   1.0 



sin Returns the trigonometric sine of an angle. (Microsystems) sin(A), where A is in radians 
Example: sin(3.14)   0.0 

tan Returns the trigonometric tangent of an angle.  (Microsystems) tan(A), where A is in radians 
Example: tan(3.14)   0.0 

acos Returns the arc cosine of an angle, in the range of 0.0 through pi. 
(Microsystems) 

acos(A), where A is the value whose arc cosine is 
to be returned. 
Example: acos(1)=0.0 

asin Returns the arc sine of an angle, in the range of -pi/2 through pi/2 
(Microsystems) 

asin (A), where A is the value whose arc sine is to 
be returned. 
Example: asin(0)=0.0 

atan Returns the arc tangent of an angle, in the range of -pi/2 
through pi/2. (Microsystems) 

atan(A), where A is the value whose arc tangent 
is to be returned. 
Example: atan(0)=0.0 

sqrt Returns the correctly rounded positive square root of a positive real 
number. (Microsystems) 

sqrt(A), where A is a real positive number. 
Example: sqrt(9)=3 

sqr Returns the value of the argument squared (to the power of 2). sqr(A) 
Example: sqr(-4)=16 
Example: sqr(2)=4 

ln Returns the natural logarithm (base e) of a real value. (Microsystems) ln(A), where A is a positive real number greater 
than zero. 
Example: ln(1)=0 
Example: ln(e^2)=2 

min Returns the smaller of two real values. That is, the result is the value 
closer to negative infinity. (Microsystems) 

min(A,B) 
Example: min(4,9)=4 
Example: min(-4,-11)=-11 

max Returns the greater of two real values. That is, the result is the 
argument closer to positive infinity. If the arguments have the same 
value, the result is that same value. (Microsystems) 

max(A,B) 
Example: max(4,9)=9 
Example: max(-4,-11)=-4 

ceil Returns the smallest (closest to negative infinity) real value that is not 
less than the argument and is equal to a mathematical integer. 
(Microsystems) 

ceil(A) 
Example: ceil(9.23)=10 
Example: ceil(-1.25)=-1 

floor Returns the largest (closest to positive infinity) value that is not 
greater than the argument and is equal to a mathematical integer 
(Microsystems) 

floor(A) 
Example: floor(9.23)=9 
Example: floor(-1.25)=-2 

abs Returns the absolute value of a real value. If the argument is not 
negative, the argument is returned. If the argument is negative, the 
negation of the argument is returned.  (Microsystems) 

abs(A) 
Example: abs(4.15)=4.15 
Example: abs(-4.3)=4.3 
Example: abs(0)=0 

neg Changes the sign of the value received as an argument (negative to 
positive or positive to negative). 

neg(A) 
Example: neg(-1)=1 
Example: neg(1)=-1 
Example: neg(0)=0 

rnd Returns a pseudo-random real value between 0.0 (included) and the 
value received as an argument (excluded). 

rnd(A) 
Example: rnd(50)=0,1.45,2.78,49.9 
Example: rnd(-20)=0,-1.45,-18.392,-19.61 

exp Returns Euler's number e raised to the power of 
a real value. (Microsystems) 

exp(A) 
Example: exp(0)=1 
Example: exp(1)=e 
Example: exp(-2)=1/(e2) 

log Returns the logarithm (base 10) of a real value. (Microsystems) log(A), where A is a positive real number greater 
than zero. 
Example: log(1)=0 
Example: log(10^2)=2 

 

 

 

 

 

 



PROBABILITY DISTRIBUTION TYPES 

When declaring a variable with a known distribution, the user can select one of many types of probability 

distributions. 

Distribution Description Parameters 

Beta The beta distribution has shape parameters α > 0 and β > 0 over the 
interval (a, b), where a < b. 
 
It has density: 
f (x) = (x - a)α-1(b - x)β-1/[B(α, β)(b - a)α+β-1] 
for a < x < b, and 0 elsewhere. 
 
It has the following distribution function: 
F(x) = Iα, β(x) = ∫a

x(ξ - a)α-1(b - ξ)β-1/[B(α, β)(b - a)α+β-1]dξ,  for a < x < b 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – shape parameter, beta > 0 
a – lower bound of the interval 
b – upper bound of the interval, b > a 

Binomial The binomial distribution with parameters n and p, where n is a 
positive integer and 0 <= p <= 1. Its mass function is given by: 
p(x) = nCr(n, x)px(1 - p)n-x = n!/[x!(n - x)!]  px(1 - p)n-x  for x = 0, 1, 2,…n, 
 
and its distribution function is: 
F(x) = ∑j=0

xnCr(n, j)  pj(1 - p)n-j        for x = 0, 1, 2,…n, 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

p – probability of success on each trial 
       (0  p 1) 
n – number of trials (integer),  n > 0 

Chi Square The chi-square distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = x(n/2)-1e-x/2/(2n/2Γ(n/2)),         for x > 0 
where Γ(x) is the gamma function. The chi-square distribution is a 
special case of the gamma distribution with shape parameter n/2 and 
scale parameter1/2. 
 
(Simard) 

n – degrees of freedom (integer), n>0 

Deterministic Distribution that represents a constant value, val. Consequently: 
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Value – any real number 

Discrete Uniform The discrete uniform distribution over the integers in the range [i, j]. Its 
mass function is given by: 
p(x) = 1/(j - i + 1)         for x = i, i + 1,…, j 
and 0 elsewhere. 
 
The distribution function is: 
F(x) = (floor(x) - i + 1)/(j - i + 1)         for i <= x <= j 
and its inverse is: 
F-1(u) = i + (j - i + 1)u        for 0 <= u <= 1. 
 
(Simard) 

Min. – lower bound (integer) 
Max. – upper bound (integer) 
             (Max. > Min.) 

Exponential The exponential distribution with mean 1/λ where λ > 0. Its density is: 
f (x) = λe-λx        for x >= 0, 
its distribution function is: 
F(x) = 1 - e-λx,        for x >= 0, 
and its inverse distribution function is: 
F-1(u) = - ln(1 - u)/λ,        for 0 < u < 1 
 
(Simard) 

Lambda – rate parameter, lambda > 0 

F-Distribution The Fisher F distribution with n and m degrees of freedom, 
where n and m are positive integers. Its density is: 
f (x) = Γ((n + m)/2)nn/2mm/2/[Γ(n/2)Γ(m/2)]x(n-2)/2/(m + nx)(n+m)/2, for x > 0. 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F. 1 – the n degrees of freedom                                                                                
                  (integer), D.O.F. 1 > 0 
D.O.F. 2 – the m degrees of freedom                                                                                
                  (integer), D.O.F. 2 > 0 



Gamma The gamma distribution with shape parameter α > 0 and scale 
parameter λ > 0. The density is: 
f (x) = λαxα-1e-λx/Γ(α),        for x > 0, 
where Γ is the gamma function, defined by: 
Γ(α) = ∫0

∞xα-1e-xdx. 
 
In particular, Γ(n) = (n - 1)! when n is a positive integer. 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 

Geometric The geometric distribution with parameter p, where 0 < p < 1. Its mass 
function is: 
p(x) = p (1 - p)x,        for x = 0, 1, 2,… 
The distribution function is given by: 
F(x) = 1 - (1 - p)x+1,        for x = 0, 1, 2,… 
and its inverse is: 
F-1(u) = floor(ln(1 - u)/ln(1 - p)),        for 0 <= u < 1 
 
(Simard) 

p – probability of success on each trial   
       (0 < p < 1) 

Gumbel The Gumbel distribution, with location parameter δ and scale 
parameter β≠ 0. Using the notation z = (x - δ)/β, it has density: 
f (x) = e-ze-e-z/| β|,        for - ∞ < x < ∞. 
and distribution function: 
F(x) = e-e-z,        for β > 0 
F(x) = 1 - e-e-z,        for β < 0 
 
(Simard) 

Beta – scale parameter, beta   0 
Delta – location parameter, any real  
              number 

Hypergeometric The hypergeometric distribution with k elements chosen 
among l, m being of one type, and l - m of the other. The 
parameters m, k and l are positive integers 
where 1 <= m <= l and 1 <= k <= l. Its mass function is given by: 
 
p(x) = nCr(m, x)nCr(l - m, k - x)/nCr(l, k) 
for max(0, k - l + m) <= x <= min(k, m) 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

m – number of elements of one type  
        (integer),   m > 0 
l – total elements (integer), l > 0 
k – number of elements chosen  
      among l (integer), k > 0 

Logistic The logistic distribution. It has location parameter α and scale 
parameter λ > 0. The density is: 
f (x) = (λe-λ(x-α))/((1 + e-λ(x-α))2)                for - ∞ < x < ∞. 
and the distribution function is: 
F(x) = 1/[1 + e-λ(x-α)]                for - ∞ < x < ∞. 
 
For λ = 1 and α = 0, one can write: 
F(x) = (1+tanh(x/2))/2. 
 
The inverse distribution function is given by: 
F-1(u) = ln(u/(1 - u))/λ + α        for 0 <= u < 1 
 
(Simard) 

Alpha – location parameter, any real  
               number 
Lambda – scale parameter, lambda>0 

Lognormal The lognormal distribution. It has scale parameter μ and shape 
parameter σ > 0. The density is: 
f (x) = ((2π)1/2σx)-1e-(ln(x)-μ)2/(2σ2)    for x > 0, and 0 elsewhere. 
 
The distribution function is: 
F(x) = Φ((ln(x)-μ)/σ)        for x > 0, 
where Φ is the standard normal distribution function. 
 
Its inverse is given by: 
F-1(u) = eμ+σΦ-1(u)        for 0 <= u < 1 
 
If ln(Y) has a normal distribution, then Y has a lognormal distribution 
with the same parameters. 
 
(Simard) 

log mu – scale parameter, any real 
                 number 
log sigma – shape parameter, 
                     log sigma > 0 



Negative Binomial The negative binomial distribution with real parameters γ and p, 
where γ > 0 and 0 <= p <= 1. Its mass function is: 
p(x) = Γ(γ + x)/(x! Γ(γ))pγ(1 - p)x,        for x = 0, 1, 2,… 
where Γ is the gamma function. 
 
If γ is an integer, p(x) can be interpreted as the probability of 
having x failures before the γ-th success in a sequence of 

independent Bernoulli trials with probability of success p.  
 
(Simard) 

Gamma – number of failures until the 
                   experiment is stopped,  
                   Gamma > 0 
p – success probability in each  
       experiment, 0  p 1 

Normal The normal distribution. It has mean μ and variance σ2. Its density 
function is: 
f (x) = e-(x-μ)2/(2σ2)/((2π)1/2σ)   for - ∞ < x < ∞ , where σ > 0. 
 
When μ = 0 and σ = 1, we have the standard normal distribution, with 
corresponding distribution function: 
F(x) = Φ(x) = ∫-∞

xe-t2/2 dt/(2π)1/2        for - ∞ < x < ∞. 
 
(Simard) 

Mean – self-explanatory, any real  
               number 
Standard Deviation – self-explanatory, 
                                       Std. Dev. > 0 

Pareto The Pareto family, with shape parameter α > 0 and location 
parameter β > 0. The density for this type of Pareto distribution is: 
f (x) = αβα/xα+1   for x >= β, and 0 otherwise. 
 
The distribution function is: 
F(x) = 1 - (β/x)α        for x >= β, 
 
and the inverse distribution function is: 
F-1(u) = β(1 - u)-1/α        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – location parameter, beta > 0 

Poisson The Poisson distribution with mean λ >=  0. The mass function is: 
p(x) = e-λλx/(x!),        for x = 0, 1,... 
and the distribution function is: 
F(x) = e-λ∑j=0

x  λj/(j!),        for x = 0, 1,.... 
 
(Simard) 

Lambda – mean, lambda   0 

Student's T The Student-t distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = [Γ((n + 1)/2)/(Γ(n/2)(πn)1/2)][1 + x2/n]-(n+1)/2     for - ∞ < x < ∞, 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F – degrees of freedom (integer), 
               D.O.F > 0 

Triangular The triangular distribution with domain [a, b] and mode (or shape 
parameter) m, where a <= m <= b. The density function is: 

f (x) = 2(x - a)/[(b - a)(m - a)]          for a <= x <= m, 

f (x) = 2(b - x)/[(b - a)(b - m)]          for m <= x <= b, 

f (x) = 0          elsewhere, 

 
the distribution function is: 

F(x) = 0          for x < a, 

F(x) = (x - a)2/[(b - a)(m - a)]          if a <= x <= m, 

F(x) = 1 - (b - x)2/[(b - a)(b - m)]          if m <= x <= b, 

F(x) = 1          for x > b, 

 
and the inverse distribution function is given by: 

F-1(u) = a + ((b - a)(m - a)u)1/2          if 0 <= u <= (m - a)/(b - a), 

F-1(u) = b - ((b - a)(b - m)(1 - u))1/2          if (m - a)/(b - a) <= u <= 1 

 
(Simard) 

a – lower bound of the domain, any  
      real number 
b – upper bound of the domain, any  
       real number 
mode – shape parameter, any real  
               number 
 
“a   mode   b” must be satisfied 

Uniform The uniform distribution over the interval [a, b]. Its density is: 
f (x) = 1/(b - a)     for a <= x <= b, and 0 elsewhere. 
 
The distribution function is: 
F(x) = (x - a)/(b - a)         for a <= x <= b 
 
and its inverse is: 
F-1(u) = a + (b - a)u        for 0 <= u <= 1                             (Simard) 

Min. – lower bound 
Max. – upper bound 
             (Max. > Min.) 



Weibull The Weibull distribution with shape parameter α > 0, location 
parameter δ, and scale parameter λ > 0. The density function is: 
f (x) = αλα(x - δ)α-1e-(λ(x-δ))α        for x > δ. 
 
the distribution function is: 
F(x) = 1 - e-(λ(x-δ))α        for x > δ, 
 
and the inverse distribution function is: 
F-1(u) = (- ln(1 - u))1/α/λ + δ        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 
Delta – location parameter, any real  
              number 

ADDING VARIABLES 

In order to add a variable to a model, the user must left-click over the + button that can be found in the Main tab: 

 

The user will be asked to enter the new variable’s name: 

 

As long as there is no other previously declared variable with the same name as the one entered, the new variable 

will show up in the list of variables. Afterwards, the user must change the variable’s information in the Variable 

Info pane, depending on the type of distribution that is to be assigned to the variable: 

 

 

 

 

 



REMOVING VARIABLES 

Removing variables is straight-forward. The user just needs to select the variable that is to be removed from the 

simulation model in the Variables pane and then left-click over the – button: 

 

In the screenshot above, the variable y would disappear from the model after clicking the – button. 

GRAPHING A SINGLE VARIABLE 

In order to verify that the parameters of the variables coincide with what the user expects, 2R Soft provides the 

option to visualize the PDF (probability density function) and CDF (cumulative density function) curves associated 

with each variable before running a model. 

To view the behavior of a particular variable in graph form, the user must select such variable in the Variables 

pane and then left-click over the Graph button: 

 

 

 

A new window will pop-up with the PDF and CDF curves: 

 

 



NORMALIZED AND CUMULATIVE HISTOGRAMS 

Normalized and Cumulative histograms are found all throughout 2R Soft. These two types of graphs are of great 

importance, considering that they show the stochastic tendencies of a data set. With them, a goodness-of-fit table 

is displayed with various probability distributions and the best estimates for their parameters, along with different 

goodness-of-fit tests: 

 

The distribution selected in the goodness-of-fit table is juxtaposed with the histograms (red curve). Refer to the 

Probability Distribution Types section for more information on the various distribution types supported by 2R Soft. 

 

GOODNESS-OF-FIT (GOF) STATISTICS 

To decide whether to accept or reject a proposed probability distribution for the generated data, it is necessary to 

at least use one goodness-of-fit statistic as a criterion. 

Col. Test Type Explanation Critical Values 

A-D Anderson-
Darling 

The Anderson-Darling test is defined as: 

H0: The data follow a specified distribution. 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Anderson-Darling test statistic is defined 
as 

 
 
where 

 
F is the cumulative distribution function of 
the specified distribution. Note that the Yi are 
the ordered data. 
 
The test is a one-sided test and the 
hypothesis that the distribution is of a specific 
form is rejected if the test statistic, A, is 
greater than the critical value. 
 
(SEMATECH2) 

 

The critical values for the Anderson-Darling test are 
dependent on the specific distribution that is being 
tested.  (SEMATECH2) 
 
For  Normal and Lognormal distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.631 0.752 0.873 1.035 

 
For Weibull and Gumbel distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.637 0.757 0.877 1.038 

 
 
(Annis)  



K-S Kolmogorov-
Smirnov 

The Kolmogorov-Smirnov test is defined by: 

H0: The data follow a specified distribution 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Kolmogorov-Smirnov test statistic is 
defined as 

 
where F is the theoretical cumulative 
distribution of the distribution being tested 
which must be a continuous distribution (i.e., 
no discrete distributions such as the binomial 
or Poisson), and it must be fully specified. 
 
(SEMATECH1) 

 

An attractive feature of this test is that the distribution 
of the K-S test statistic itself does not depend on the 
underlying cumulative distribution function being 
tested. Therefore, the critical values are universal. 
(SEMATECH1) 
 
For samples with more than 35 values: (ERI)  
 

Significance 0.20 0.15 0.10 0.05 0.01 

Critical Value     

√ 
 
    

√ 
 
    

√ 
 
    

√ 
 
    

√ 
 

 

K-S+ 
and 
K-S- 

Kolmogorov-
Smirnov+ 
and 
Kolmogorov-
Smirnov- 

Given a sample of n independent uniforms Ui over [0, 1], 
the Kolmogorov-Smirnov+ statistic Dn

+ and 
the Kolmogorov-Smirnov- statistic Dn

-, are defined by  

Dn
+ = max1 <= j <= n(j/n - U(j)),   

Dn
- = max1 <= j <= n(U(j) - (j - 1)/n),   

 
where the U(j) are the Ui sorted in increasing order. Both 
statistics follows the same distribution function, 
i.e. Fn(x) = P[Dn

+ <= x] = P[Dn
- <= x] 

 
(Simard) 

The same from the K-S test. 

CVM Cramér-von 
Mises 

Given a sample of n independent uniforms Ui over [0, 1], 
the Cramér-von Mises statistic Wn

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n(U(j) - (j-0.5)/n)2, 

where the U(j) are the Ui sorted in increasing order. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Wn

2 <= x] 
 
(Simard) 

As with the K-S test, the critical values are universal: 
  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.138 0.149 0.162 0.175 0.186 

10 0.125 0.142 0.167 0.212 0.32 
20 0.128 0.146 0.172 0.217 0.33 
30 0.128 0.146 0.172 0.218 0.33 
60 0.128 0.147 0.173 0.220 0.33 

100 0.129 0.147 0.173 0.220 0.34 

 
(ReliaSoftCorp) 

WG Watson G Given a sample of n independent uniforms Ui over [0, 1], 
the G statistic is defined by  

Gn = (n)1/2max1 <= j <= n[j/n - U(j) + bar(U)n -1/2]   

  = (n)1/2(Dn
+ + bar(U)n - 1/2),   

 
where the U(j) are the Ui sorted in increasing 
order, bar(U)n is the average of the observations Ui, 
and Dn

+ is the Kolmogorov-Smirnov+ statistic. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Gn <= x] 
 
(Simard) 

From 2R Soft WG CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.609 0.636 0.670 0.718 0.787 

10 0.692 0.728 0.773 0.843 0.979 
20 0.711 0.747 0.794 0.866 1.010 
30 0.719 0.755 0.802 0.875 1.021 
60 0.728 0.765 0.813 0.887 1.034 

100 0.734 0.770 0.818 0.893 1.041 
1000 0.745 0.782 0.831 0.906 1.055 

10000 0.749 0.786 0.834 0.909 1.059 

  

WU Watson U Given a sample of n independent uniforms ui over [0, 1], 
the Watson statistic Un

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n[u(j) - (j-0.5)/n]2,  

Un
2 = Wn

2 - n(bar(u)n -1/2)2. 
where the u(j) are the ui sorted in increasing order, 
and bar(u)n is the average of the observations ui. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) =P[Un

2 <= x] 
 
(Simard) 

From 2R Soft WU CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.122 0.132 0.143 0.154 0.164 

10 0.116 0.130 0.150 0.183 0.255 
20 0.116 0.131 0.151 0.185 0.262 
30 0.117 0.131 0.151 0.185 0.264 
60 0.117 0.131 0.151 0.186 0.266 

100 0.117 0.131 0.152 0.186 0.267 
1000 0.117 0.131 0.152 0.187 0.268 

10000 0.117 0.131 0.152 0.187 0.268 
 

 

 



STATISTICS 

When appropriate, 2R Soft calculates an array of statistics that can be both relevant and pertinent for users 

interested in analyzing the behavior of a data set. 

 

The screenshot above is an example of what the user should expect to find in a Statistics tab. The following 

subsections of this document explain each of the statistics that are calculated by 2R Soft.  

MEAN 

The arithmetic mean of a set of values is the quantity commonly called "the" mean or the average. Given a set of 
samples *  +, the arithmetic mean is: (Weisstein2) 

 ̅  
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VARIANCE 

For a series of data, the sample variance may be computed as: (Weisstein3) 
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where  ̅ is the sample mean. 
 
Note that the sample variance   

  defined above is not an unbiased estimator for the population variance,   . In 
order to obtain an unbiased estimator for   , it is necessary to instead define a "bias-corrected sample variance": 
(Weisstein3) 
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2R Soft uses the bias-corrected sample variance. 

From the mathematical definition of variance, it is clear that this statistic expresses the dispersion of the data with 

respect to the mean. The larger the variance, the more spread out is the data. 



STANDARD DEVIATION 

The standard deviation formula is very simple: it is the square root of the variance. It is the most commonly used 

measure of spread (Lane2). Hence, an unbiased estimator of the population standard deviation,  , is given by: 
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DIVISIONS BY ZERO AND ILLEGAL VALUES 

This statistic expresses the proportion of failed iterations during the simulation model run as a percentage of the 

total number of simulations, N. A failed iteration is defined as one that didn’t return a real number when the 

equation was evaluated. There are two possible reasons for a failed iteration to arise: 

1. There was a division by zero. 

2. One or more of the functions used in the equation received an illegal parameter. For example, log(x) is 

only defined for positive real numbers. If x is a random variable and the generated value for x is negative 

in an iteration, then log(x) cannot be evaluated, yielding a failed iteration. 

The amount of usable generated values can be calculated from this statistic: 

                        (                                        )    

For example, if the reported percentage of failed iterations is 5% for a simulation with N=100, then the simulation 

analysis (goodness-of-fit, statistics, histograms, convergence graphs, etc) is carried out with 95 data points. 

KURTOSIS 

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets 

with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data 

sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would 

be the extreme case. For univariate data Y1, Y2, ..., YN, the formula for kurtosis is: (SEMATECH3) 
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where  ̅ is the mean,   is the standard deviation, and N is the number of data points. 

SKEWNESS 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is 

symmetric if it looks the same to the left and right of the center point. For univariate data Y1, Y2, ..., YN, the formula 

for skewness is: (SEMATECH3) 
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where  ̅ is the mean,   is the standard deviation, and N is the number of data points. The skewness for a normal 

distribution is zero, and any symmetric data should have a skewness near zero. Negative values for the skewness 

indicate data that are skewed left and positive values for the skewness indicate data that are skewed right. By 



skewed left, we mean that the left tail is long relative to the right tail. Similarly, skewed right means that the right 

tail is long relative to the left tail. Some measurements have a lower bound and are skewed right. For example, in 

reliability studies, failure times cannot be negative. (SEMATECH3) 

QUARTILES (Q1, MEDIAN, Q3) 

The quartiles of a data set are formed by the two boundaries on either side of the median, which divide the set 

into four equal sections. The lowest 25% of the data being found below the first quartile value, also called the 

lower quartile (Q1). The median, or second quartile divides the set into two equal sections. The lowest 75% of the 

data set should be found below the third quartile, also called the upper quartile (Q3). These three numbers are 

measures of the dispersion of the data, while the mean, median and mode are measures of central tendency. 

(EncyclopediaOfStatistics) 

BOX-WHISKER DIAGRAM 

Given some data, a box and whisker diagram (or box plot) can be drawn to show the spread of the data. The 

diagram shows the quartiles of the data, using these as an indication of the spread. (MathsRevision.net) 

The diagram is made up of a "box", which lies between the upper and lower quartiles. The median can also be 

indicated by dividing the box into two. (MathsRevision.net) 

The "whiskers" are straight line extending from the ends of the box to the maximum and minimum values: 

(MathsRevision.net) 

 

In 2R Soft, the Box-Whisker diagram also contains a black dot, which marks the arithmetic mean of the generated 

values. 

 



MAIN TAB 

EQUATION 

2R Sim only supports explicit equations, and only one equation can be associated with a specific model. The 

equation is to be written in the Main tab: 

 

Refer to the Equation Editor section for information on supported functions and equation syntax in general. 

 

KNOWN VS UNKNOWN DISTRIBUTIONS 

When declaring the variables involved in a simulation model, the user must decide if these have known or 

unknown probability distributions. The differences between both scenarios are: 

Known Distributions Unknown Distributions 

 Depending on the distributions being used, the 
user will have to enter between 2 and 4 
parameters per variable. 

 3 different types of simulation can be carried 
out: Monte Carlo, Latin Hypercube, and 
Orthogonal Latin Hypercube. 

 The results obtained depend on the type of 
simulation and number of simulation iterations 
of the run. Furthermore, the results are never 
exactly the same, but can be considered 
practically identical if the simulation 
parameters being used are well chosen. 

 The user only needs to input the mean and 
standard deviation for each variable. 

 Only one type of simulation can be carried out: 
Rosenblueth 2

k+1
. 

 The model will give exactly the same results 
every time it is analyzed. 

To indicate the type of model that will be used, the user must select the correct radio button in the Main tab: 



CORRELATIONS MATRIX (CORRELATIONS TABLE) 

The correlation coefficient is a single number between -1 and 1 that describes the dependence between two 

variables. The formula used to compute the correlation coefficient of two variables from experimental data is 

(Lane): 

 

When two variables are independent from each other, their correlation coefficient is equal to 0. On the other 

hand, if two variables are perfectly dependent, their correlation coefficient is equal to 1 (as one increases the 

other one also increases) or -1 (as one increases the other one decreases, and vice-versa). 

During a simulation run, random values of the different variables must be generated. Hence, 2R Sim must take 

correlations into account to make simulations as accurate as possible, since the value generated for a variable 

might influence the probability distribution of another variable in a simulation’s iteration. This information is 

entered by the user in the form of a Correlation Matrix that is shown in the Main tab: 

 

The resulting matrix is always symmetric and shows the multiple dependencies that exist between all the variables 

contained in the current model. To edit a correlation coefficient, the user must double-click over the 

corresponding cell and enter the new value. 

 

RUNNING A SIMULATION 

When the simulation model is complete (equation, variables, correlation matrix), the simulation process can be 

started by navigating through the Simulation menu and selecting the Run option: 

 

 

 

 



If the current model deals with known distributions, the following screen will appear: 

 

After entering a valid number of simulations and selecting the appropriate simulation type, pressing the Start 

button will begin the simulation. 

If the current model deals with unknown distributions, the following screen will appear: 

 

In this case, the only action needed for the simulation to start is a left click over the Start button. This is due to the 

fact that there is a single simulation type available for models with unknown distributions, and the number of 

simulations is given by the amount of variables used in the equation, which is explained in the Rosenblueth section 

of this document. 

MONTE CARLO  

The Monte Carlo algorithm follows the flow chart shown below: (N is the number of simulations to be carried out) 

 



Although the Monte Carlo algorithm is simple, one run can be time-consuming because the generation of random 

numbers and the evaluation of an equation are processor-intensive procedures. Nonetheless, each iteration is 

independent from the rest, which enables the use of a thread pool to run various iterations at the same time 

depending on the amount of processing cores available in the computer running the program. 2R Sim uses the 

thread pool strategy to speed up Monte Carlo runs. 

 

LATIN HYPERCUBE 

The Latin Hypercube algorithm uses a sampling process different from the one in the basic Monte Carlo algorithm, 

leading to a better coverage of the sampling space with a smaller number of iterations. As expected, the resulting 

flow chart is more elaborate than the one shown in the previous section: (N is the number of simulations to be 

carried out) 

 

 

As the flow chart shows, the Latin Hypercube algorithm divides the range [0,1] in N partitions of the same size 

(segmentSize), and then takes one value, u, from each of those partitions to generate the random values of the 

variables. The thread pool strategy mentioned in the previous section is also employed by 2R Sim with this 

algorithm, taking into account that the iterations are still independent from each other. 

 



ORTHOGONAL LATIN HYPERCUBE 

This algorithm refines the sampling process of the normal Latin Hypercube by dividing the sampling space into 

subspaces with the same probability, where the amount of samples taken from each of those subspaces is the 

same. If each variable’s sampling space is divided into two sections (upper and lower), there will be 2
m

 equally 

probable subspaces to be monitored, being m the number of variables being used. The resulting flow chart is: (N is 

the number of simulations to be carried out, and is a multiple of 2
m

) 

 



As shown in the flow diagram, the Orthogonal Latin Hypercube algorithm is comprised of two cycles: one that 

calculates random values for the variables and another one that picks generated random values according to the 

appropriate subspaces and evaluates the equation with the values picked. The binary form is used as a way to 

assure that each subspace is sampled the same number of times as the rest. As with the previous algorithms, the 

Orthogonal Latin Hypercube is optimized in 2R Sim by using a thread pool due to the independence of the 

iterations. 

 

ROSENBLUETH (2K +1) 

The Rosenblueth (2
k+1

) algorithm is a simple way to simulate the behavior of an equation containing variables with 

unknown distributions. The calculations involved only require the means and standard deviations of such variables. 

Let N = 2
m

, where N is the number of simulations to be carried out and m is the number of variables being used: 

 

The flow chart shows that the idea of this algorithm is to evaluate the equation with all the possible “Mean   

Standard Deviation” permutations that can be generated with the variables being used. Taking into account that 2 

possible states exist per variable (Mean+Std.Dev. and Mean-Std.Dev.), the amount of values to be generated is 

given by 2
m

. 

This algorithm is also run by 2R Sim with a thread pool strategy to minimize the processing time. 

 



MEAN AND STANDARD DEVIATION CONVERGENCE GRAPHS 

The mean and standard deviation convergence graphs are important tools that indicate whether the simulation 

was successful or not. One should only use the results from a simulation if there is a clear convergence in both 

statistics. 

These statistics are calculated with the following equations (Weisstein): (N is the total number of simulations) 
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The standard deviation being calculated is an unbiased estimator for the population variance, since it is equivalent 

to the statistic known as     
 . 

An example of a converging simulation: 

 

Clearly, the simulation above is stable after 2,500 simulations and has a mean of approximately 1.0 and standard 

deviation of around 3.0. 

An example of a diverging simulation: 

 

In this case, the simulation doesn’t show a clear trend towards any value, even after 10,000 simulations have been 

performed. 

 



If a simulation fails to converge, there are two possibilities: 

1. The number of simulations carried out was insufficient. If this is true, the user should increase the 

amount of simulations and run the model again. 

2. The equation doesn’t converge. Some equations don’t have a defined expected value and, consequently, 

are unpredictable. An example of such phenomenon is the equation 1/x when x has an exponential 

distribution with lambda of 0.5. 

REAL TIME GRAPHS 

By default, 2R Sim displays the mean and standard deviation convergence graphs after the simulation is 

completed. However, 2R Sim is capable of generating the mentioned graphs dynamically while a simulation is 

running. To enable this behavior, navigate through the Simulation menu and activate the Real Time checkbox 

under the Graphs submenu: 

 

Warning: even though this option can be visually appealing, it does require a larger amount of processing power. 

Thus, simulations run with real time graphs are bound to take a larger amount of time to complete. 

REPORT GENERATION 

2R Sim is capable of exporting all the useful information that results from a simulation run to PDF format. To do 

this, a user must navigate through the Simulation menu and select the Generate Report option. This option will 

only be enabled if a successful run has been completed. 

 

The user is then prompted for the new report’s name and location before 2R Sim creates the PDF file. 

EXPORTING SIMULATION DATA 

Even though 2R Sim provides a large amount of statistics and analysis tools, some users might want to analyze the 

data themselves with other software packages. For that reason, 2R Sim users are given the option to export the 

values generated during the simulation to XLSX (Excel 2007) format. The option to do this is located under the 

Simulation menu and is labeled as Export Simulation Data.  

 

The resulting spreadsheet contains the values corresponding to the evaluation of the equation as a whole in each 

iteration. 



DATA GENERATION FUNCTIONS 

EVENTS IN TIME – RANDOM SHOCKS 

Random shocks are events with variable magnitudes and/or non-deterministic times of occurrence. These shocks 

come one after the other, meaning that they comprise a sequence of events in time. Nonetheless, they are 

completely independent from one another. 

INPUT 

 

 Magnitudes – an equation indicating the shock magnitude for the events to be generated. It can be as 

simple as “x” or more elaborate, such as “sin(y)+sqrt(z)/p”, where x, y, z, and p are random variables. 

Refer to the Equation Editor section for more information on equation syntax and variable management. 

 Time between events – an equation indicating the time between one event and the next. It can be as 

simple as “x” or more elaborate, such as “sin(y)+sqrt(z)/p”, where x, y, z, and p are random variables. 

Refer to the Equation Editor section for more information on equation syntax and variable management. 

Values will be generated until the user’s condition is satisfied. Such condition can be expressed in two possible 

ways: 

 t_max: data generation stops when a shock’s time of occurrence exceeds the specified time. 

 # of Events: data generation stops when the specified number of shocks have been generated. 

OUTPUT 

The resulting shocks and their corresponding magnitudes are displayed in tabular form: 

 

Data can be exported to excel with no hassle. 



Two graphical representations of the data are shown: 

 

The “Point Series” shows each event on its own, while the “Cumulative Series” shows the sum of shock magnitudes 

for every moment in time. 

 

EVENTS IN TIME – UNCORRELATED TIME SERIES 

Uncorrelated time series follow a specific trend in time (mu) with some variability (sigma). Each unitary increase in 

time (from t=0 to t=1, t=1 to t=2, etc) is considered as an independent event. Consequently, a 10-event 

uncorrelated time series goes from t=0 to t=10. Both mu and sigma can be functions of time, t. The data 

generation algorithm is described below: 

1. t=0 

2. Let M=mu(t) and S=sigma(t). To determine the value of the time series at t, a normally distributed variable 

with mean M and standard deviation S is created and a random value of that variable is taken. 

3. t increases by 1. If t is less than the number of events to be generated, step 2 is carried out again. 

Otherwise, data generation ends. 

INPUT 

 

 Sigma – an equation expressing the variability of the time series at time, t. If sigma is time-dependent, the 

variable “t” should be part of the equation. Refer to the Equation Editor section for more information on 

equation syntax and variable management. 

 Mu – an equation expressing the time series’ trend as a function of time, t. If mu is time-dependent, the 

variable “t” should be part of the equation. Refer to the Equation Editor section for more information on 

equation syntax and variable management. 

 # of Events – the amount of “steps” in time to be simulated. 

 



OUTPUT 

The resulting time series is displayed in tabular form, where the “res.” column contains the value generated on 

each t. The “delta” column is calculated as “res.-mu(t)”, giving a point’s deviation from the trend. 

 

Data can be exported to excel with no hassle. 

In addition to the table, “Delta Series” and “Resulting Series” graphs are presented. The former displays the 

deviations with respect to mu(t), while the latter contrasts the resulting time series (red) with the basic trend 

(blue): 

  

 

SPATIAL EVENTS 

Random spatial events can be generated in a 2-dimensional space. Their magnitude can be expressed as a random 

variable, although the default setting is for all of the events to have a magnitude of exactly 1. Most importantly, 

the (X,Y) coordinates of the events depend on the directional distribution and on the arbitrary boundaries selected 

by the user. 

The basic algorithm for spatial event generation is as follows: 

1. A direction (between 0 and 2 ) is randomly selected. 

2. Events are generated in that direction. This step depends on the “directional distribution” setting. 

3. Steps 1 and 2 are repeated until an appropriate number of events have been generated. 

 

 

 

 



INPUT 

 

The Center X and Center Y coordinates define the point from which events will be generated in each random 

direction. Meanwhile, the Magnitudes random variable establishes the possible values for the magnitude of each 

event (refer to the Probability Distribution Types section for information on probability distributions and their 

parameters). In addition, the # of Events textbox is used to set the number of data points to be generated. 

The directional distribution has 2 possible settings: 

 Distance Between Events – the user selects a random variable to express the distance between one event 

and the next (refer to the Probability Distribution Types section for information on probability 

distributions and their parameters). Under this scheme, step 2 of the basic algorithm begins at the center 

point and continues in the current direction, one event after the other, until a boundary is reached. 

 # of Events – the user selects a random variable to express the number of events per random direction 

(refer to the Probability Distribution Types section for information on probability distributions and their 

parameters). Under this scheme, step 2 of the basic algorithm evenly distributes the distance between the 

center point and the closest boundary in the current direction to fit the number of events given by the 

random variable. 

Boundaries also have 2 alternatives: 

 Circle - a circle of radius “r” around the center point is set to be the boundary; hence, no data point can 

fall beyond that circle. 

 Rect./Band – this is a more flexible type of boundary. If X Max and/or Y Max are left blank, there is no 

upper limit in the X and/or Y coordinates of the events. Accordingly, if X Min and/or Y Min are left blank, 

there is no lower limit in the X and/or Y coordinates of the events. This way, the user can decide which 

dimensions to limit and how to limit them. 

 

 

 

 



OUTPUT 

The resulting events are summarized in a table: (the “mag.” column shows the magnitude of the events) 

 

A graphical representation of the spatial events is also shown: (black lines are boundaries, red boxes are events) 

 

Events with higher magnitudes are drawn with larger boxes. 

 

RANDOM WALK 

Random Walk is a special type of 2-dimensional event generation. In random walk simulations, an “event” isn’t a 

point in space, but rather a path that starts in a specified center coordinate and is generated as follows: 

1. A random distance given by a Step Size variable is initially covered in one of 4 directions: Up, Down, Right, 

or Left, chosen at random. 

2. Based on p(right), the probability of making a right turn, the program randomly decides whether it is 

going to make a left or a right turn. A right turn constitutes a clockwise rotation of 90 degrees, while a left 

turn constitutes a counterclockwise rotation of the same magnitude.  

3. A random distance given by a Step Size variable is covered in the new direction. 

4. Steps 2 and 3 are repeated until a boundary is reached or until a specified number of steps have been 

generated, depending on the “boundary” settings. 

 

 



INPUT 

 

Boundaries can be of 3 different types: 

 None – in this case, the random walk simulation runs for a specified number of steps. 

 Circle – in this case, a circular boundary of radius “r” is set around the center point and simulations stop 

when they reach that boundary. 

 Rect./Band - this is a more flexible type of boundary. If X Max and/or Y Max are left blank, there is no 

upper limit in the X and/or Y coordinates of the events. Accordingly, if X Min and/or Y Min are left blank, 

there is no lower limit in the X and/or Y coordinates of the events. This way, the user can decide which 

dimensions to limit and how to limit them. Simulations stop when they reach a boundary. 

If no boundary is set, the Basic Input pane shows the following options: 

 

 p(right) – the probability of making a right turn. 

 Center X – x-coordinate of the center point. 

 Center Y – y-coordinate of the center point. 

 #Steps – number of steps to simulate. 

 Step Size – a random variable indicating the amount of distance to cover between turns (refer to the 

Probability Distribution Types section for information on probability distributions and their parameters). 

If a boundary is set, the Basic Input pane shows the following options: 

 

 # Simulations – the number of random walks to carry out. 

 The rest of the options are as explained above. 



OUTPUT 

 

Two result windows are displayed after running a BOUNDED simulation. If no bounds have been set, only the 

window to the left will be shown. 

On the window to the left: 

 The “<<” and “>>” buttons are used to navigate between simulations. Each simulation is a full random 

walk. 

 The table shows the x and y coordinates of each “decision point” comprising the random walk and can be 

easily exported to Excel. 

 The “Random Walk” graph displays the entire simulation in red and the boundaries in black. 

On the window to the right: 

 Normalized and Cumulative histograms for the # Steps To Boundary measure are presented, based on all 

of the simulations run. Refer to the Normalized and Cumulative Histograms section for more information 

on how to interpret these graphs. 

 Detailed statistics regarding the # Steps To Boundary measure can be found in the Statistics tab. Refer to 

the Statistics section for more information on how to interpret these statistics. 

 

RANDOM FIELDS 

Random Fields are a way to model the value of a parameter P in a 2-dimensional space. The space is divided into 
sections. As explained in (Caro, Masad et al. 2011): 
 
“Adjacent elements are more likely to have similar values of the parameter P than the values of elements that are 
further apart. Therefore, the value of P assigned to a given section should be somehow correlated with the values 
of P in neighbor cells. The distance at which this similarity is expected (i.e. the length of influence of the parameter 
P) is called the autocorrelation distance or correlation length of the random field, LT. In addition to the correlation 
length, a random field is also characterized by the mean value of P and a dispersion measure, e.g. standard 
deviation. The average value of P and its variability among different realizations always converge to the mean and 
standard deviation of the random field.” 
 



2R Sim uses the method proposed by El-Kadi and Williams, which is based on two main assumptions: (1) the 
parameter of interest, P, has a normal or lognormal distribution within the space of interest and (2) P is 
characterized by an exponential autocorrelation function. The first assumption defines the process of determining 
probable values of P for each element of the space, whereas the second defines how the values of P at different  

locations are correlated (Caro, Masad et al. 2011). 
 
For a detailed explanation of the calculations involved in the Random Field generation process, refer to (Caro, 
Masad et al. 2011). 
 

INPUT 

 

 #Vertical Divs – the number of vertical divisions in which to divide the space. 

 #Horizontal Divs – the number of horizontal divisions in which to divide the space. 

 Space Height – the real-life height of the space being modeled (in meters, feet, or any other relevant 

measurement units). 

 Space Width – the real-life width of the space being modeled. Unit consistency is required. For this 

reason, the user is expected to employ the same measurement units used to define the Space Height. 

 Mu – the mean value of the parameter of interest, P. 

 Sigma – the standard deviation of the parameter of interest, P. 

 Vertical Autocorr. L – autocorrelation length in the vertical direction. Unit consistency is required. For 

this reason, the user is expected to employ the same measurement units used to define the Space 

Height. 

 Horizontal Autocorr. L – autocorrelation length in the horizontal direction. Unit consistency is required. 

For this reason, the user is expected to employ the same measurement units used to define the Space 

Width. 

 # of Simulations – the number of random fields to be generated. 

 



OUTPUT 

After pressing the Start button, the user is prompted to select an “output folder”, which is where all of the results 

will be saved. The folder selection dialog provides the option to create a new folder, which is recommended in 

most cases in order to separate the Random Fields files from other unrelated files found in the hard disk: 

 

After the simulation is complete, the output folder will contain a JPG image per simulation and a single Excel file 

(res.xlsx) containing numeric data. Each tab in the Excel file contains the matrix of resulting values for the 

parameter of interest, P, in a specific random field: 

 



A graphical representation of the random field in tab X of the Excel file can be found in the image with the name 

X.jpg located inside the output folder: 

 

A DARKER section indicates a LOWER value of parameter P. 

 



EXAMPLES 

EXAMPLE 1 – MARKETING A NEW PRODUCT 

A company wants to know how profitable it will be to market its new product, taking into account that there are 

many uncertainties associated with market size, expenses, and revenue. The governing equation is: 

                       

The income from the marketing effort is given by the number of sales (S) multiplied by the profit per sale (P). The 

number of sales resulting from the marketing campaign is equal to the number of monthly leads (L) multiplied by 

the conversion rate (R), where the conversion rate indicates the percentage of leads that result in a sale. Thus: 

             

The expenses can be divided into two types of costs: fixed costs (K) and variable costs (V). Unlike fixed costs, 

variable costs depend on the number of leads per month (L) and the cost of a single lead (C) that is charged by the 

marketing company. As a result: 

               

Consequently, the model to be run is expressed by: 

             (     ) 

 

A market research and previous data have led to the following expected distributions for the 5 different variables 

of interest: 

Variable Distribution Explanation 

L Uniform with 1200 as a minimum 
and 1800 as a maximum 

1200 is guaranteed by the marketing company, while 1800 is 
the most optimistic prediction from the market research 

R Normal with mean of 3% and 
standard deviation of 1% 

Drawn from previous marketing efforts 

P The profit per sale follows a 
triangular distribution with $50 as 
its mode, $47 as its minimum, and 
$60 as its maximum 

While the company has a margin of $60 when the client uses 
cash as a payment method, the most popular payment method 
is credit card, which results in profits of $50 per unit. Lastly, 
there are payments by check, which yield a unit profit of $47. 

K Deterministic value of $800 Value specified in the contract with the marketing company. 
C Uniform between $0.20 and $0.80 The cost of obtaining a lead depends on the medium used 

(internet, phone, etc) and on the hour of the day (extra hours 
or normal labor hours). 

 

 

 

 

 

 



Running the Example 1 model 10,000 times in simple Monte Carlo mode: 

 

The Mean and Standard Deviation convergence graphs show that the simulation does indeed converge to specific 

values, indicating that the information of the normalized and cumulative histograms can be used for further 

analysis. According to the Anderson-Darling goodness-of-fit statistic, the best probability distribution for the non-

deterministic monthly profit obtained through the marketing of the company’s new product is a Normal 

distribution with mean $804.03 and standard deviation $854.73. 

From the cumulative histogram, one may see that there is approximately a 16% chance of losing money by carrying 

out the marketing campaign throughout a month. Also, the expected return on investment is approximately 52% 

($804.03 from an average investment [or expenses] of $1550). Thus, depending on the company’s risk perception, 

the project may be considered attractive or not. 

 

 

 

 

 

 

 



EXAMPLE 2 – DESIGN MOMENT AND SHEAR STRESS FOR A BEAM  

A beam is to be designed to withstand the following loads with 95% reliability: 

 

Taken from (Sprecace) 

The maximum moment for the design needs to be determined when design parameters follow known 

distributions: 

Variable Distribution Explanation 

w Uniform with a minimum of 10 kN/m 
(1 ton) and maximum of 18 kN/m 

The expected dead load is 10 kN/m, while the maximum 
expected live load is 8 kN/m. 

b Beta distribution with an alpha of 5, 
beta of 3, lower bound of 5 meters, 
and upper bound of 20 meters 

The lower and upper bounds come from the dimensions of 
the beam itself and from the objects to be placed on the 
beam, while the alpha and beta parameters are such that 
the distribution is skewed to the right. 

L Deterministic value of 20 meters Given in the architectural designs. 
e Normal with mean of 10 meters and 

standard deviation of 1 meter. 
The loads tend to be located on the center of the beam. 

d It is actually L-e No distribution is needed for this variable, as it can be 
calculated from L and e. 

 

 

 

 

 

 



 

Running the Example 2 model 10,000 times in simple Monte Carlo mode: 

 

The Mean and Standard Deviation convergence graphs show that the simulation does indeed converge to specific 

values, indicating that the information of the normalized and cumulative histograms can be used for further 

analysis. According to the Anderson-Darling goodness-of-fit statistic, the best probability distribution for the 

maximum moment on the beam resulting from the variable loads to be sustained is a Gamma distribution with an 

alpha of 25.23 and lambda of 0.04, where values are expressed in kN*m. 

According to the cumulative histogram, the design moment should be approximately 825 kN*m to achieve a 95% 

reliability. 
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