FILE OPERATIONS

$2 R \operatorname{Sim}$ is capable of reading and writing $.2 r$ files, which contain the complete description of a specific simulation model:

1. The model's equation.
2. All the variables and their corresponding probability distribution where appropriate, along with the pertinent parameters.
3. The correlation matrix.

These files are the means for 2R Sim users to save their work, as well as the medium of distribution of models that could be of interest to other 2R Sim users.

SAVING MODELS

Even if a model isn't yet complete, a user can decide to save its information for later use. In order to do this, the user must navigate through the File menu and select the Save or Save As... option:

2R Simulation
File Simulation Help Open n Conv. Save Save As... San Close

The difference between Save and Save As... is that, while Save will only ask for the file's name and destination once and will then overwrite that same file on any subsequent uses, Save As... will ask for the file's name and destination every time it is invoked. Thus, Save As... is to be used whenever a user wants to save modifications made to a file without modifying the base file.

OPENING MODELS

In order to load the information contained inside a $.2 r$ file, the user must navigate through the File menu and select the Open option:

If no errors occur, the loaded model is shown in the Main tab (equation, variables, and correlation matrix).

GRAPHS

All of the graphs generated in $2 R$ Soft provide a wide array of options in the form of a context menu. The context menu appears when you right-click over a graph:

S1 Series

PROPERTIES PANE
If you select the Properties... option, a properties pane appears. The properties pane lets you change the graph title, axis names, axis ranges, and font size.

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft Word, Microsoft PowerPoint, etc).

Meanwhile, if Save As... is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting the desired output folder and file name:

PRINT
The Print option does just that: it sends the graph to the printer of your choice (local or networked):

SCALE OPTIONS

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is needed for an axis, we highly recommend the Properties Pane.

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you're interested in a specific region, hold your left-click and drag the mouse to generate a highlighted box around that region:

S1 Series

The end result:
S1 Series

EQUATION EDITOR

User-entered equations are common in $2 R$ Soft. This section of the document explains the use of the equation editor.

FUNCTIONS AND OPERATIONS

Equations can contain the following functions and operations:

Function/Op.	Description	Usage (A and B are declared variables or numeric values)
+	Addition.	A+B
		Example: $4+7=11$
-	Subtraction.	A-B
		Example: 4-7=-3
*	Multiplication.	A*B
		Example: $4 * 7=28$
/	Division.	A/B
		Example: 6/4=1.5
\wedge	Returns the value of the first operand raised to the power of the second operand. (Microsystems)	$A^{\wedge} \mathrm{B}$
		Example: $5^{\wedge} 3=125$
		Example: $5^{\wedge}(-3)=1 / 125$
\%	Modulo operation. Divides the value of one expression by the value of another, and returns the remainder. (MSDN)	A\%B
		Example: 7\%3=1
		Example: 67\%10=7
cos	Returns the trigonometric cosine of an angle. (Microsystems)	$\cos (\mathrm{A})$, where A is in radians
		Example: $\cos (3.14) \approx 1.0$

sin	Returns the trigonometric sine of an angle. (Microsystems)	$\sin (A)$, where A is in radians Example: $\sin (3.14) \approx 0.0$
tan	Returns the trigonometric tangent of an angle. (Microsystems)	$\tan (A)$, where A is in radians Example: $\tan (3.14) \approx 0.0$
acos	Returns the arc cosine of an angle, in the range of 0.0 through pi. (Microsystems)	$\operatorname{acos}(A)$, where A is the value whose arc cosine is to be returned. Example: $\operatorname{acos}(1)=0.0$
asin	Returns the arc sine of an angle, in the range of $-\mathrm{pi} / 2$ through $\mathrm{pi} / 2$ (Microsystems)	$\operatorname{asin}(A)$, where A is the value whose arc sine is to be returned. Example: asin(0)=0.0
atan	Returns the arc tangent of an angle, in the range of -pi/2 through pi/2. (Microsystems)	$\operatorname{atan}(A)$, where A is the value whose arc tangent is to be returned. Example: $\operatorname{atan}(0)=0.0$
sqrt	Returns the correctly rounded positive square root of a positive real number. (Microsystems)	$\operatorname{sqrt}(A)$, where A is a real positive number. Example: sqrt(9)=3
sqr	Returns the value of the argument squared (to the power of 2).	$\operatorname{sqr}(\mathrm{A})$ Example: $\operatorname{sqr}(-4)=16$ Example: $\operatorname{sqr}(2)=4$
In	Returns the natural logarithm (base e) of a real value. (Microsystems)	$\ln (A)$, where A is a positive real number greater than zero. Example: $\ln (1)=0$ Example: $\ln \left(e^{\wedge} 2\right)=2$
\min	Returns the smaller of two real values. That is, the result is the value closer to negative infinity. (Microsystems)	$\begin{aligned} & \min (A, B) \\ & \text { Example: } \min (4,9)=4 \\ & \text { Example: } \min (-4,-11)=-11 \end{aligned}$
max	Returns the greater of two real values. That is, the result is the argument closer to positive infinity. If the arguments have the same value, the result is that same value. (Microsystems)	$\max (\mathrm{A}, \mathrm{B})$ Example: $\max (4,9)=9$ Example: $\max (-4,-11)=-4$
ceil	Returns the smallest (closest to negative infinity) real value that is not less than the argument and is equal to a mathematical integer. (Microsystems)	ceil(A) Example: $\operatorname{ceil}(9.23)=10$ Example: ceil(-1.25)=-1
floor	Returns the largest (closest to positive infinity) value that is not greater than the argument and is equal to a mathematical integer (Microsystems)	floor(A) Example: floor(9.23)=9 Example: floor(-1.25)=-2
abs	Returns the absolute value of a real value. If the argument is not negative, the argument is returned. If the argument is negative, the negation of the argument is returned. (Microsystems)	abs(A) Example: abs(4.15)=4.15 Example: abs(-4.3)=4.3 Example: abs(0)=0
neg	Changes the sign of the value received as an argument (negative to positive or positive to negative).	neg(A) Example: neg(-1)=1 Example: neg(1)=-1 Example: $\operatorname{neg}(0)=0$
rnd	Returns a pseudo-random real value between 0.0 (included) and the value received as an argument (excluded).	rnd(A) Example: $\mathrm{rnd}(50)=0,1.45,2.78,49.9$ Example: rnd(-20)=0,-1.45,-18.392,-19.61
exp	Returns Euler's number e raised to the power of a real value. (Microsystems)	$\exp (A)$ Example: $\exp (0)=1$ Example: $\exp (1)=e$ Example: $\exp (-2)=1 /\left(e^{2}\right)$
\log	Returns the logarithm (base 10) of a real value. (Microsystems)	$\log (A)$, where A is a positive real number greater than zero. Example: $\log (1)=0$ Example: $\log \left(10^{\wedge} 2\right)=2$

PROBABILITY DISTRIBUTION TYPES

When declaring a variable with a known distribution, the user can select one of many types of probability distributions.

Distribution	Description	Parameters
Beta	The beta distribution has shape parameters $\alpha>0$ and $b>0$ over the interval (a, b), where $a<b$. It has density: $f(x)=(x-a)^{\alpha-1}(b-x)^{\beta-1} /\left[B(\alpha, B)(b-a)^{\alpha+\beta-1}\right]$ for $a<x<b$, and 0 elsewhere. It has the following distribution function: $F(x)=I_{\alpha, \beta}(x)=\int_{\mathrm{a}}{ }^{x}(\xi-a)^{\alpha-1}(b-\xi)^{\beta-1} /\left[B(\alpha, \beta)(b-a)^{\alpha+\beta-1}\right] d \xi, \text { for } a<x<b$ (Simard)	Alpha - shape parameter, alpha >0 Beta - shape parameter, beta >0 a - lower bound of the interval b - upper bound of the interval, $b>a$
Binomial	The binomial distribution with parameters n and p, where n is a positive integer and $0<=p<=1$. Its mass function is given by: $p(x)=n \operatorname{Cr}(n, x) p^{x}(1-p)^{n-x}=n!/[x!(n-x)!] p^{x}(1-p)^{n-x}$ for $x=0,1,2, \ldots n$, and its distribution function is: $F(x)=\sum_{j=0}{ }^{x} n \operatorname{Cr}(n, j) p^{j}(1-p)^{n-j} \quad \text { for } x=0,1,2, \ldots n,$ where $\mathrm{nCr}(n, x)$ is the number of possible combinations of x elements chosen among a set of n elements. (Simard)	$\begin{aligned} & p-\text { probability of success on each trial } \\ & \quad(0 \leq p \leq 1) \\ & n-\text { number of trials (integer), } n>0 \end{aligned}$
Chi Square	The chi-square distribution with n degrees of freedom, where n is a positive integer. Its density is: $f(x)=x^{(n / 2)-1} e^{-x / 2} /\left(2^{n / 2} \Gamma(n / 2)\right), \quad \text { for } x>0$ where $\Gamma(x)$ is the gamma function. The chi-square distribution is a special case of the gamma distribution with shape parameter $n / 2$ and scale parameter1/2. (Simard)	n - degrees of freedom (integer), $n>0$
Deterministic	Distribution that represents a constant value, val. Consequently: $f(x)=\left\{\begin{array}{l} 1 \text { if } x=\text { val } \\ 0 \text { if } x \neq \text { val } \end{array}, \quad F(x)=\left\{\begin{array}{l} 1 \text { if } x \geq \text { val } \\ 0 \text { if } x<\text { val } \end{array}\right.\right.$	Value - any real number
Discrete Uniform	The discrete uniform distribution over the integers in the range $[i, j]$. Its mass function is given by: $p(x)=1 /(j-i+1) \quad \text { for } x=i, i+1, \ldots, j$ and 0 elsewhere. The distribution function is: $F(x)=(f \operatorname{loor}(x)-i+1) /(j-i+1) \quad \text { for } i<=x<=j$ and its inverse is: $F^{-1}(u)=i+(j-i+1) u \quad \text { for } 0<=u<=1 .$ (Simard)	Min. - lower bound (integer) Max. - upper bound (integer) (Max. > Min.)
Exponential	The exponential distribution with mean $1 / \lambda$ where $\lambda>0$. Its density is: $f(x)=\lambda e^{-\lambda x} \quad$ for $x>=0$, its distribution function is: $F(x)=1-e^{-\lambda x}, \quad \text { for } x>=0$ and its inverse distribution function is: $F^{-1}(u)=-\ln (1-u) / \lambda, \quad \text { for } 0<u<1$ (Simard)	Lambda - rate parameter, lambda >0
F-Distribution	The Fisher F distribution with n and m degrees of freedom, where n and m are positive integers. Its density is: $f(x)=\Gamma((n+m) / 2) n^{n / 2} m^{m / 2} /[\Gamma(n / 2) \Gamma(m / 2)] x^{(n-2) / 2} /(m+n x)^{(n+m) / 2}$, for $x>0$. where $\Gamma(x)$ is the gamma function (Simard)	D.O.F. 1 - the n degrees of freedom (integer), D.O.F. $1>0$ D.O.F. 2 - the m degrees of freedom (integer), D.O.F. $2>0$

Gamma	The gamma distribution with shape parameter $\alpha>0$ and scale parameter $\lambda>0$. The density is: $f(x)=\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} / \Gamma(\alpha), \quad \text { for } x>0,$ where Γ is the gamma function, defined by: $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ In particular, $\Gamma(n)=(n-1)$! when n is a positive integer. (Simard)	Alpha - shape parameter, alpha >0 Lambda - scale parameter, lambda>0
Geometric	The geometric distribution with parameter p, where $0<p<1$. Its mass function is: $p(x)=p(1-p)^{x}, \quad \text { for } x=0,1,2, \ldots$ The distribution function is given by: $F(x)=1-(1-p)^{x+1}, \quad \text { for } x=0,1,2, \ldots$ and its inverse is: $F^{-1}(u)=\text { floor }(\ln (1-u) / \ln (1-p)), \quad \text { for } 0<=u<1$ (Simard)	p - probability of success on each trial ($0<p<1$)
Gumbel	The Gumbel distribution, with location parameter δ and scale parameter $B \neq 0$. Using the notation $z=(x-\delta) / B$, it has density: $f(x)=e^{-2} e^{-e-z} /\|\|B\|, \quad$ for $-\infty<x<\infty$. and distribution function: $\begin{array}{ll} F(x)=e^{-e-2}, & \text { for } B>0 \\ F(x)=1-e^{-e-2}, & \text { for } B<0 \end{array}$ (Simard)	Beta - scale parameter, beta $\neq 0$ Delta - location parameter, any real number
Hypergeometric	The hypergeometric distribution with k elements chosen among I, m being of one type, and $I-m$ of the other. The parameters m, k and $/$ are positive integers where $1<=m<=/$ and $1<=k<=I$. Its mass function is given by: $p(x)=\mathrm{nCr}(m, x) \mathrm{nCr}(l-m, k-x) / \mathrm{nCr}(1, k)$ $\text { for } \max (0, k-I+m)<=x<=\min (k, m)$ where $\mathrm{nCr}(n, x)$ is the number of possible combinations of x elements chosen among a set of n elements. (Simard)	```\(m\) - number of elements of one type (integer), \(m>0\) 1 - total elements (integer), \(1>0\) k - number of elements chosen among l (integer), \(\mathrm{k}>0\)```
Logistic	The logistic distribution. It has location parameter α and scale parameter $\lambda>0$. The density is: $f(x)=\left(\lambda e^{-\lambda(x-\alpha)}\right) /\left(\left(1+e^{-\lambda(x-\alpha)}\right)^{2}\right) \quad \text { for }-\infty<x<\infty \text {. }$ and the distribution function is: $F(x)=1 /\left[1+e^{-\lambda(x-\alpha)}\right] \quad \text { for }-\infty<x<\infty .$ For $\lambda=1$ and $\alpha=0$, one can write: $F(x)=(1+\tanh (x / 2)) / 2$ The inverse distribution function is given by: $F^{-1}(u)=\ln (u /(1-u)) / \lambda+\alpha \quad \text { for } 0<=u<1$ (Simard)	Alpha - location parameter, any real number Lambda - scale parameter, lambda>0
Lognormal	The lognormal distribution. It has scale parameter μ and shape parameter $\sigma>0$. The density is: $f(x)=\left((2 \pi)^{1 / 2} \sigma x\right)^{-1} e^{-(\ln (x)-\mu) 2 /(2 \sigma 2)}$ for $x>0$, and 0 elsewhere. The distribution function is: $F(x)=\Phi((\ln (x)-\mu) / \sigma) \quad$ for $x>0$, where Φ is the standard normal distribution function. Its inverse is given by: $F^{1}(u)=e^{\mu+\sigma \Phi-1(u)} \quad \text { for } 0<=u<1$ If $\ln (Y)$ has a normal distribution, then Y has a lognormal distribution with the same parameters. (Simard)	log mu - scale parameter, any real number log sigma - shape parameter, \log sigma >0

Weibull	The Weibull distribution with shape parameter $\alpha>0$, location parameter δ, and scale parameter $\lambda>0$. The density function is: $f(x)=\alpha \lambda^{\alpha}(x-\delta)^{\alpha-1} e^{-(\lambda(x-\delta))^{\alpha} \alpha} \quad \text { for } x>\delta$ the distribution function is: $F(x)=1-e^{-(\lambda(x-\delta)) \alpha} \quad \text { for } x>\delta$ and the inverse distribution function is: $F^{-1}(u)=(-\ln (1-u))^{1 / \alpha} / \lambda+\delta \quad \text { for } 0<=u<1$ (Simard)	Alpha - shape parameter, alpha >0 Lambda - scale parameter, lambda>0 Delta - location parameter, any real number

ADDING VARIABLES

In order to add a variable to a model, the user must left-click over the + button that can be found in the Main tab:

The user will be asked to enter the new variable's name:

As long as there is no other previously declared variable with the same name as the one entered, the new variable will show up in the list of variables. Afterwards, the user must change the variable's information in the Variable Info pane, depending on the type of distribution that is to be assigned to the variable:

Removing variables is straight-forward. The user just needs to select the variable that is to be removed from the simulation model in the Variables pane and then left-click over the - button:

In the screenshot above, the variable \mathbf{y} would disappear from the model after clicking the - button.

GRAPHING A SINGLE VARIABLE

In order to verify that the parameters of the variables coincide with what the user expects, $2 R$ Soft provides the option to visualize the PDF (probability density function) and CDF (cumulative density function) curves associated with each variable before running a model.

To view the behavior of a particular variable in graph form, the user must select such variable in the Variables pane and then left-click over the Graph button:

A new window will pop-up with the PDF and CDF curves:

Normalized and Cumulative histograms are found all throughout 2R Soft. These two types of graphs are of great importance, considering that they show the stochastic tendencies of a data set. With them, a goodness-of-fit table is displayed with various probability distributions and the best estimates for their parameters, along with different goodness-of-fit tests:

The distribution selected in the goodness-of-fit table is juxtaposed with the histograms (red curve). Refer to the Probability Distribution Types section for more information on the various distribution types supported by 2R Soft.

GOODNESS-OF-FIT (GOF) STATISTICS

To decide whether to accept or reject a proposed probability distribution for the generated data, it is necessary to at least use one goodness-of-fit statistic as a criterion.

Col.	Test Type		Explanation	Critical Values				
A-D	AndersonDarling	The Anderson-Darling test is defined as:		The critical values for the Anderson-Darling test are dependent on the specific distribution that is being tested. (SEMATECH2) For Normal and Lognormal distributions:				
		H_{0} :	The data follow a specified distribution.					
		H_{a} :	The data do not follow the specified distribution					
		Test Statistic:	The Anderson-Darling test statistic is defined as $A^{2}=-N-S$ where $S=\sum_{i=1}^{N} \frac{(2 i-1)}{N}\left[\ln F\left(Y_{i}\right)+\ln \left(1-F\left(Y_{N+1-i}\right)\right)\right]$ F is the cumulative distribution function of the specified distribution. Note that the Y_{i} are the ordered data. The test is a one-sided test and the hypothesis that the distribution is of a specific form is rejected if the test statistic, A, is greater than the critical value. (SEMATECH2)	alpha	$\begin{aligned} & 0.1 \\ & \hline 6.621 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \hline 0.752 \end{aligned}$	$\begin{aligned} & \hline 0.025 \\ & \hline 0872 \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & \hline 1.025 \end{aligned}$
				For Weibull and Gumbel distributions:				
				alpha	0.1	0.05	0.025	0.01
				\mathbf{A}^{2} crit	0.637	0.757	0.877	1.038
				(Annis)				

K-S Kolmogorov-
Smirnov
The Kolmogorov-Smirnov test is defined by:
H_{0} : The data follow a specified distribution
H_{a} : \quad The data do not follow the specified distribution
Test The Kolmogorov-Smirnov test statistic is Statistic: defined as

$$
D=\max _{1 \leq i \leq N}\left(F\left(Y_{i}\right)-\frac{i-1}{N}, \frac{i}{N}-F\left(Y_{i}\right)\right)
$$

where \boldsymbol{F} is the theoretical cumulative distribution of the distribution being tested which must be a continuous distribution (i.e., no discrete distributions such as the binomial or Poisson), and it must be fully specified.

An attractive feature of this test is that the distribution of the K-S test statistic itself does not depend on the underlying cumulative distribution function being tested. Therefore, the critical values are universal. (SEMATECH1)

For samples with more than 35 values: (ERI)

Significance	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 1}$
Critical Value	$\frac{1.07}{\sqrt{N}}$	$\frac{1.14}{\sqrt{N}}$	$\frac{1.22}{\sqrt{N}}$	$\frac{1.36}{\sqrt{N}}$	$\frac{1.63}{\sqrt{N}}$

(SEMATECH1)

WU Watson $U \quad$ Given a sample of n independent uniforms u_{i} over $[0,1]$, From 2R Soft WU CDF code:
the Watson statistic $U_{n}{ }^{2}$ is defined by
$W_{\mathrm{n}}{ }^{2}=1 / 12 n+\sum_{\mathrm{j}=1}{ }^{\mathrm{n}}\left[u_{(\mathrm{ij}}-(j-0.5) / n\right]^{2}$,
$U_{n}{ }^{2}=W_{n}^{2}-n\left(\operatorname{bar}\left(\mathrm{u}_{n}-1 / 2\right)^{2}\right.$.
where the $u_{i j}$ are the u_{i} sorted in increasing order, and $\operatorname{bar}(u)_{n}$ is the average of the observations u_{i}. The distribution function (the cumulative probabilities) is defined as $F_{n}(x)=P\left[U_{n}^{2}<=x\right]$
(Simard)

Significance					
\mathbf{N}	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 1}$
$\mathbf{2}$	0.122	0.132	0.143	0.154	0.164
$\mathbf{1 0}$	0.116	0.130	0.150	0.183	0.255
$\mathbf{2 0}$	0.116	0.131	0.151	0.185	0.262
$\mathbf{3 0}$	0.117	0.131	0.151	0.185	0.264
$\mathbf{6 0}$	0.117	0.131	0.151	0.186	0.266
$\mathbf{1 0 0}$	0.117	0.131	0.152	0.186	0.267
$\mathbf{1 0 0 0}$	0.117	0.131	0.152	0.187	0.268
$\mathbf{1 0 0 0 0}$	$\mathbf{0 . 1 1 7}$	0.131	0.152	0.187	0.268

When appropriate, 2R Soft calculates an array of statistics that can be both relevant and pertinent for users interested in analyzing the behavior of a data set.

The screenshot above is an example of what the user should expect to find in a Statistics tab. The following subsections of this document explain each of the statistics that are calculated by $2 R$ Soft.

MEAN
The arithmetic mean of a set of values is the quantity commonly called "the" mean or the average. Given a set of samples $\left\{x_{i}\right\}$, the arithmetic mean is: (Weisstein2)

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

VARIANCE
For a series of data, the sample variance may be computed as: (Weisstein3)

$$
s_{N}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

where \bar{x} is the sample mean.

Note that the sample variance s_{N}^{2} defined above is not an unbiased estimator for the population variance, σ^{2}. In order to obtain an unbiased estimator for σ^{2}, it is necessary to instead define a "bias-corrected sample variance": (Weisstein3)

$$
s_{N-1}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

2R Soft uses the bias-corrected sample variance.
From the mathematical definition of variance, it is clear that this statistic expresses the dispersion of the data with respect to the mean. The larger the variance, the more spread out is the data.

The standard deviation formula is very simple: it is the square root of the variance. It is the most commonly used measure of spread (Lane2). Hence, an unbiased estimator of the population standard deviation, σ, is given by:

$$
s_{N-1}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

DIVISIONS BY ZERO AND ILLEGAL VALUES

This statistic expresses the proportion of failed iterations during the simulation model run as a percentage of the total number of simulations, N. A failed iteration is defined as one that didn't return a real number when the equation was evaluated. There are two possible reasons for a failed iteration to arise:

1. There was a division by zero.
2. One or more of the functions used in the equation received an illegal parameter. For example, $\boldsymbol{\operatorname { l o g }}(\mathbf{x})$ is only defined for positive real numbers. If \mathbf{x} is a random variable and the generated value for \mathbf{x} is negative in an iteration, then $\log (\mathbf{x})$ cannot be evaluated, yielding a failed iteration.

The amount of usable generated values can be calculated from this statistic:

$$
\text { Usable generated values }=(1-\% \text { divisions by zero and illegal values }) * N
$$

For example, if the reported percentage of failed iterations is 5% for a simulation with $N=100$, then the simulation analysis (goodness-of-fit, statistics, histograms, convergence graphs, etc) is carried out with 95 data points.

KURTOSIS

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case. For univariate data $Y_{1}, Y_{2}, \ldots, Y_{N}$, the formula for kurtosis is: (SEMATECH3)

$$
\text { kurtosis }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{4}}{(N-1) s^{4}}
$$

where \bar{Y} is the mean, s is the standard deviation, and N is the number of data points.

SKEWNESS

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point. For univariate data $Y_{1}, Y_{2}, \ldots, Y_{N}$, the formula for skewness is: (SEMATECH3)

$$
\text { skewness }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{3}}{(N-1) s^{3}}
$$

where \bar{Y} is the mean, s is the standard deviation, and N is the number of data points. The skewness for a normal distribution is zero, and any symmetric data should have a skewness near zero. Negative values for the skewness indicate data that are skewed left and positive values for the skewness indicate data that are skewed right. By
skewed left, we mean that the left tail is long relative to the right tail. Similarly, skewed right means that the right tail is long relative to the left tail. Some measurements have a lower bound and are skewed right. For example, in reliability studies, failure times cannot be negative. (SEMATECH3)

```
QUARTILES (Q1, MEDIAN, Q3)
```

The quartiles of a data set are formed by the two boundaries on either side of the median, which divide the set into four equal sections. The lowest 25% of the data being found below the first quartile value, also called the lower quartile (Q1). The median, or second quartile divides the set into two equal sections. The lowest 75% of the data set should be found below the third quartile, also called the upper quartile (Q3). These three numbers are measures of the dispersion of the data, while the mean, median and mode are measures of central tendency. (EncyclopediaOfStatistics)

BOX-WHISKER DIAGRAM

Given some data, a box and whisker diagram (or box plot) can be drawn to show the spread of the data. The diagram shows the quartiles of the data, using these as an indication of the spread. (MathsRevision.net)

The diagram is made up of a "box", which lies between the upper and lower quartiles. The median can also be indicated by dividing the box into two. (MathsRevision.net)

The "whiskers" are straight line extending from the ends of the box to the maximum and minimum values:
(MathsRevision.net)

In 2R Soft, the Box-Whisker diagram also contains a black dot, which marks the arithmetic mean of the generated values.

MAIN TAB

EQUATION

$2 R$ Sim only supports explicit equations, and only one equation can be associated with a specific model. The equation is to be written in the Main tab:

Refer to the Equation Editor section for information on supported functions and equation syntax in general.

KNOWN VS UNKNOWN DISTRIBUTIONS

When declaring the variables involved in a simulation model, the user must decide if these have known or unknown probability distributions. The differences between both scenarios are:

Known Distributions
 Unknown Distributions

- Depending on the distributions being used, the user will have to enter between 2 and 4 parameters per variable.
- 3 different types of simulation can be carried out: Monte Carlo, Latin Hypercube, and Orthogonal Latin Hypercube.
- The results obtained depend on the type of simulation and number of simulation iterations of the run. Furthermore, the results are never exactly the same, but can be considered practically identical if the simulation parameters being used are well chosen.

To indicate the type of model that will be used, the user must select the correct radio button in the Main tab:

The correlation coefficient is a single number between -1 and 1 that describes the dependence between two variables. The formula used to compute the correlation coefficient of two variables from experimental data is (Lane):

$$
r=\frac{\sum X Y-\sum X \sum^{Y}}{\left.\sqrt{\left(\sum^{2}-\left(\sum_{N}^{2}\right)\right.} \times \sum^{Y^{2}-\left(\sum_{N}\right)^{2}}\right)}
$$

When two variables are independent from each other, their correlation coefficient is equal to 0 . On the other hand, if two variables are perfectly dependent, their correlation coefficient is equal to 1 (as one increases the other one also increases) or -1 (as one increases the other one decreases, and vice-versa).

During a simulation run, random values of the different variables must be generated. Hence, 2 R Sim must take correlations into account to make simulations as accurate as possible, since the value generated for a variable might influence the probability distribution of another variable in a simulation's iteration. This information is entered by the user in the form of a Correlation Matrix that is shown in the Main tab:

The resulting matrix is always symmetric and shows the multiple dependencies that exist between all the variables contained in the current model. To edit a correlation coefficient, the user must double-click over the corresponding cell and enter the new value.

RUNNING A SIMULATION

When the simulation model is complete (equation, variables, correlation matrix), the simulation process can be started by navigating through the Simulation menu and selecting the Run option:

If the current model deals with known distributions, the following screen will appear:

After entering a valid number of simulations and selecting the appropriate simulation type, pressing the Start button will begin the simulation.

If the current model deals with unknown distributions, the following screen will appear:

In this case, the only action needed for the simulation to start is a left click over the Start button. This is due to the fact that there is a single simulation type available for models with unknown distributions, and the number of simulations is given by the amount of variables used in the equation, which is explained in the Rosenblueth section of this document.

MONTE CARLO

The Monte Carlo algorithm follows the flow chart shown below: (N is the number of simulations to be carried out)

Although the Monte Carlo algorithm is simple, one run can be time-consuming because the generation of random numbers and the evaluation of an equation are processor-intensive procedures. Nonetheless, each iteration is independent from the rest, which enables the use of a thread pool to run various iterations at the same time depending on the amount of processing cores available in the computer running the program. 2R Sim uses the thread pool strategy to speed up Monte Carlo runs.

LATIN HYPERCUBE

The Latin Hypercube algorithm uses a sampling process different from the one in the basic Monte Carlo algorithm, leading to a better coverage of the sampling space with a smaller number of iterations. As expected, the resulting flow chart is more elaborate than the one shown in the previous section: (N is the number of simulations to be carried out)

As the flow chart shows, the Latin Hypercube algorithm divides the range [0,1] in N partitions of the same size (segmentSize), and then takes one value, u, from each of those partitions to generate the random values of the variables. The thread pool strategy mentioned in the previous section is also employed by $2 R$ Sim with this algorithm, taking into account that the iterations are still independent from each other.

This algorithm refines the sampling process of the normal Latin Hypercube by dividing the sampling space into subspaces with the same probability, where the amount of samples taken from each of those subspaces is the same. If each variable's sampling space is divided into two sections (upper and lower), there will be 2^{m} equally probable subspaces to be monitored, being m the number of variables being used. The resulting flow chart is: (N is the number of simulations to be carried out, and is a multiple of 2^{m})

As shown in the flow diagram, the Orthogonal Latin Hypercube algorithm is comprised of two cycles: one that calculates random values for the variables and another one that picks generated random values according to the appropriate subspaces and evaluates the equation with the values picked. The binary form is used as a way to assure that each subspace is sampled the same number of times as the rest. As with the previous algorithms, the Orthogonal Latin Hypercube is optimized in 2R Sim by using a thread pool due to the independence of the iterations.

ROSENBLUETH ($2^{\mathrm{K}+1}$)

The Rosenblueth $\left(2^{k+1}\right)$ algorithm is a simple way to simulate the behavior of an equation containing variables with unknown distributions. The calculations involved only require the means and standard deviations of such variables.

Let $N=2^{m}$, where N is the number of simulations to be carried out and m is the number of variables being used:

The flow chart shows that the idea of this algorithm is to evaluate the equation with all the possible "Mean \pm Standard Deviation" permutations that can be generated with the variables being used. Taking into account that 2 possible states exist per variable (Mean+Std.Dev. and Mean-Std.Dev.), the amount of values to be generated is given by 2^{m}.

This algorithm is also run by $2 R$ Sim with a thread pool strategy to minimize the processing time.

The mean and standard deviation convergence graphs are important tools that indicate whether the simulation was successful or not. One should only use the results from a simulation if there is a clear convergence in both statistics.

These statistics are calculated with the following equations (Weisstein): (N is the total number of simulations)

$$
\begin{gathered}
\text { Mean }_{i}=\frac{\sum_{k=0}^{i} \text { result }_{k}}{i+1}, \quad 0 \leq i<N \\
\text { Std.Dev. }_{\cdot i}=\sqrt{\frac{\sum_{k=0}^{i}\left(\text { result }_{k}-\text { Mean }_{i}\right)^{2}}{i}}, \quad 1 \leq i<N
\end{gathered}
$$

The standard deviation being calculated is an unbiased estimator for the population variance, since it is equivalent to the statistic known as s_{N-1}^{2}.

An example of a converging simulation:

Clearly, the simulation above is stable after 2,500 simulations and has a mean of approximately 1.0 and standard deviation of around 3.0.

An example of a diverging simulation:

In this case, the simulation doesn't show a clear trend towards any value, even after 10,000 simulations have been performed.

If a simulation fails to converge, there are two possibilities:

1. The number of simulations carried out was insufficient. If this is true, the user should increase the amount of simulations and run the model again.
2. The equation doesn't converge. Some equations don't have a defined expected value and, consequently, are unpredictable. An example of such phenomenon is the equation $\mathbf{1 / x}$ when \mathbf{x} has an exponential distribution with lambda of 0.5.

REAL TIME GRAPHS

By default, 2R Sim displays the mean and standard deviation convergence graphs after the simulation is completed. However, 2R Sim is capable of generating the mentioned graphs dynamically while a simulation is running. To enable this behavior, navigate through the Simulation menu and activate the Real Time checkbox under the Graphs submenu:

Warning: even though this option can be visually appealing, it does require a larger amount of processing power. Thus, simulations run with real time graphs are bound to take a larger amount of time to complete.

REPORT GENERATION

2R Sim is capable of exporting all the useful information that results from a simulation run to PDF format. To do this, a user must navigate through the Simulation menu and select the Generate Report option. This option will only be enabled if a successful run has been completed.

The user is then prompted for the new report's name and location before 2R Sim creates the PDF file.

EXPORTING SIMULATION DATA

Even though 2R Sim provides a large amount of statistics and analysis tools, some users might want to analyze the data themselves with other software packages. For that reason, $2 R$ Sim users are given the option to export the values generated during the simulation to XLSX (Excel 2007) format. The option to do this is located under the Simulation menu and is labeled as Export Simulation Data.

The resulting spreadsheet contains the values corresponding to the evaluation of the equation as a whole in each iteration.

EVENTS IN TIME - RANDOM SHOCKS

Random shocks are events with variable magnitudes and/or non-deterministic times of occurrence. These shocks come one after the other, meaning that they comprise a sequence of events in time. Nonetheless, they are completely independent from one another.

INPUT

- Magnitudes - an equation indicating the shock magnitude for the events to be generated. It can be as simple as " \mathbf{x} " or more elaborate, such as "sin(y)+sqrt(z)/p", where $\mathbf{x}, \mathbf{y}, \mathbf{z}$, and \mathbf{p} are random variables. Refer to the Equation Editor section for more information on equation syntax and variable management.
- Time between events - an equation indicating the time between one event and the next. It can be as simple as " \mathbf{x} " or more elaborate, such as " $\sin (y)+s q r t(z) / p$ ", where $\mathbf{x}, \mathbf{y}, \mathbf{z}$, and \mathbf{p} are random variables. Refer to the Equation Editor section for more information on equation syntax and variable management.

Values will be generated until the user's condition is satisfied. Such condition can be expressed in two possible ways:

- t_max: data generation stops when a shock's time of occurrence exceeds the specified time.
- \# of Events: data generation stops when the specified number of shocks have been generated.

OUTPUT

The resulting shocks and their corresponding magnitudes are displayed in tabular form:

Data can be exported to excel with no hassle.

The "Point Series" shows each event on its own, while the "Cumulative Series" shows the sum of shock magnitudes for every moment in time.

EVENTS IN TIME - UNCORRELATED TIME SERIES

Uncorrelated time series follow a specific trend in time (mu) with some variability (sigma). Each unitary increase in time (from $t=0$ to $t=1, t=1$ to $t=2$, etc) is considered as an independent event. Consequently, a 10-event uncorrelated time series goes from $t=0$ to $t=10$. Both $m u$ and sigma can be functions of time, \mathbf{t}. The data generation algorithm is described below:

1. $\mathbf{t}=0$
2. Let $M=m u(t)$ and $S=\operatorname{sigma}(\mathbf{t})$. To determine the value of the time series at \mathbf{t}, a normally distributed variable with mean M and standard deviation S is created and a random value of that variable is taken.
3. \mathbf{t} increases by 1 . If \mathbf{t} is less than the number of events to be generated, step 2 is carried out again. Otherwise, data generation ends.

INPUT

Start

Cancel

- Sigma - an equation expressing the variability of the time series at time, \mathbf{t}. If sigma is time-dependent, the variable " t " should be part of the equation. Refer to the Equation Editor section for more information on equation syntax and variable management.
- Mu - an equation expressing the time series' trend as a function of time, \mathbf{t}. If mu is time-dependent, the variable " t " should be part of the equation. Refer to the Equation Editor section for more information on equation syntax and variable management.
- \# of Events - the amount of "steps" in time to be simulated.

OUTPUT

The resulting time series is displayed in tabular form, where the "res." column contains the value generated on each \mathbf{t}. The "delta" column is calculated as "res.-mu(t)", giving a point's deviation from the trend.

Data can be exported to excel with no hassle.
In addition to the table, "Delta Series" and "Resulting Series" graphs are presented. The former displays the deviations with respect to mu(t), while the latter contrasts the resulting time series (red) with the basic trend (blue):

SPATIAL EVENTS

Random spatial events can be generated in a 2-dimensional space. Their magnitude can be expressed as a random variable, although the default setting is for all of the events to have a magnitude of exactly 1 . Most importantly, the (X, Y) coordinates of the events depend on the directional distribution and on the arbitrary boundaries selected by the user.

The basic algorithm for spatial event generation is as follows:

1. A direction (between 0 and 2π) is randomly selected.
2. Events are generated in that direction. This step depends on the "directional distribution" setting.
3. Steps 1 and 2 are repeated until an appropriate number of events have been generated.

The Center \mathbf{X} and Center \mathbf{Y} coordinates define the point from which events will be generated in each random direction. Meanwhile, the Magnitudes random variable establishes the possible values for the magnitude of each event (refer to the Probability Distribution Types section for information on probability distributions and their parameters). In addition, the \# of Events textbox is used to set the number of data points to be generated.

The directional distribution has 2 possible settings:

- Distance Between Events - the user selects a random variable to express the distance between one event and the next (refer to the Probability Distribution Types section for information on probability distributions and their parameters). Under this scheme, step 2 of the basic algorithm begins at the center point and continues in the current direction, one event after the other, until a boundary is reached.
- \# of Events - the user selects a random variable to express the number of events per random direction (refer to the Probability Distribution Types section for information on probability distributions and their parameters). Under this scheme, step 2 of the basic algorithm evenly distributes the distance between the center point and the closest boundary in the current direction to fit the number of events given by the random variable.

Boundaries also have 2 alternatives:

- Circle - a circle of radius " r " around the center point is set to be the boundary; hence, no data point can fall beyond that circle.
- Rect./Band - this is a more flexible type of boundary. If \mathbf{X} Max and/or \mathbf{Y} Max are left blank, there is no upper limit in the \mathbf{X} and/or \mathbf{Y} coordinates of the events. Accordingly, if $\mathbf{X} \mathbf{M i n}$ and/or \mathbf{Y} Min are left blank, there is no lower limit in the \mathbf{X} and/or \mathbf{Y} coordinates of the events. This way, the user can decide which dimensions to limit and how to limit them.

OUTPUT

The resulting events are summarized in a table: (the "mag." column shows the magnitude of the events)

\#	x	y	mag.		
1	2.9852938...	5.6148377...	106.92253...	-	
2	0.7542502.	6.9666871...	99.604588.		
3	-1.3819281...	8.2610550...	77.616981...		
4	-4.1905903...	9.9628990...	105.30713...	$-$	
5	-6.9042485...	11.607177...	97.338394...		
6	3.8119143...	5.8664080...	94.184836...		Export to Excel
7	3.1391114...	8.9656442	126.65220...		
8	2.4306474...	12.229152.	104.38658...		
9	2.1869662	13.351658...	81.654189.		
10	1.5845344...	16.126733...	95.616889...		
4	-ncourta	17 nenern	1000207.	-	

A graphical representation of the spatial events is also shown: (black lines are boundaries, red boxes are events)

Events with higher magnitudes are drawn with larger boxes.

RANDOM WALK

Random Walk is a special type of 2-dimensional event generation. In random walk simulations, an "event" isn't a point in space, but rather a path that starts in a specified center coordinate and is generated as follows:

1. A random distance given by a Step Size variable is initially covered in one of 4 directions: Up, Down, Right, or Left, chosen at random.
2. Based on \mathbf{p} (right), the probability of making a right turn, the program randomly decides whether it is going to make a left or a right turn. A right turn constitutes a clockwise rotation of 90 degrees, while a left turn constitutes a counterclockwise rotation of the same magnitude.
3. A random distance given by a Step Size variable is covered in the new direction.
4. Steps 2 and 3 are repeated until a boundary is reached or until a specified number of steps have been generated, depending on the "boundary" settings.

Boundaries can be of 3 different types:

- None - in this case, the random walk simulation runs for a specified number of steps.
- Circle - in this case, a circular boundary of radius " r " is set around the center point and simulations stop when they reach that boundary.
- Rect./Band - this is a more flexible type of boundary. If \mathbf{X} Max and/or \mathbf{Y} Max are left blank, there is no upper limit in the \mathbf{X} and/or \mathbf{Y} coordinates of the events. Accordingly, if $\mathbf{X} \mathbf{M i n}$ and/or \mathbf{Y} Min are left blank, there is no lower limit in the \mathbf{X} and/or \mathbf{Y} coordinates of the events. This way, the user can decide which dimensions to limit and how to limit them. Simulations stop when they reach a boundary.

If no boundary is set, the Basic Input pane shows the following options:

- $\quad \mathbf{p}$ (right) - the probability of making a right turn.
- Center $\mathbf{X}-\mathrm{x}$-coordinate of the center point.
- Center Y - y-coordinate of the center point.
- \#Steps - number of steps to simulate.
- Step Size - a random variable indicating the amount of distance to cover between turns (refer to the Probability Distribution Types section for information on probability distributions and their parameters).

If a boundary is set, the Basic Input pane shows the following options:
$\left[\begin{array}{lc|}\text { Basic Input } & \\ \text { p(right) } & 1.0 \\ \text { Center } \mathbf{X} & 0.0 \\ \text { Center } Y & 0.0 \\ \text { \#Simulations } & 1 \\ \text { Step Size } & \text { Set } \\ \hline\end{array}\right.$

- \# Simulations - the number of random walks to carry out.
- The rest of the options are as explained above.

Two result windows are displayed after running a BOUNDED simulation. If no bounds have been set, only the window to the left will be shown.

On the window to the left:

- The "<<" and ">>" buttons are used to navigate between simulations. Each simulation is a full random walk.
- The table shows the x and y coordinates of each "decision point" comprising the random walk and can be easily exported to Excel.
- The "Random Walk" graph displays the entire simulation in red and the boundaries in black.

On the window to the right:

- Normalized and Cumulative histograms for the \# Steps To Boundary measure are presented, based on all of the simulations run. Refer to the Normalized and Cumulative Histograms section for more information on how to interpret these graphs.
- Detailed statistics regarding the \# Steps To Boundary measure can be found in the Statistics tab. Refer to the Statistics section for more information on how to interpret these statistics.

RANDOM FIELDS

Random Fields are a way to model the value of a parameter \mathbf{P} in a 2-dimensional space. The space is divided into sections. As explained in (Caro, Masad et al. 2011):
"Adjacent elements are more likely to have similar values of the parameter P than the values of elements that are further apart. Therefore, the value of P assigned to a given section should be somehow correlated with the values of P in neighbor cells. The distance at which this similarity is expected (i.e. the length of influence of the parameter P) is called the autocorrelation distance or correlation length of the random field, LT. In addition to the correlation length, a random field is also characterized by the mean value of P and a dispersion measure, e.g. standard deviation. The average value of P and its variability among different realizations always converge to the mean and standard deviation of the random field."

2R Sim uses the method proposed by El-Kadi and Williams, which is based on two main assumptions: (1) the parameter of interest, \mathbf{P}, has a normal or lognormal distribution within the space of interest and (2) P is characterized by an exponential autocorrelation function. The first assumption defines the process of determining probable values of P for each element of the space, whereas the second defines how the values of P at different locations are correlated (Caro, Masad et al. 2011).

For a detailed explanation of the calculations involved in the Random Field generation process, refer to (Caro, Masad et al. 2011).

INPUT

Start

Stop

Fields generated: 0

- \#Vertical Divs - the number of vertical divisions in which to divide the space.
- \#Horizontal Divs - the number of horizontal divisions in which to divide the space.
- Space Height - the real-life height of the space being modeled (in meters, feet, or any other relevant measurement units).
- Space Width - the real-life width of the space being modeled. Unit consistency is required. For this reason, the user is expected to employ the same measurement units used to define the Space Height.
- Mu - the mean value of the parameter of interest, P.
- Sigma - the standard deviation of the parameter of interest, P.
- Vertical Autocorr. L - autocorrelation length in the vertical direction. Unit consistency is required. For this reason, the user is expected to employ the same measurement units used to define the Space Height.
- Horizontal Autocorr. L - autocorrelation length in the horizontal direction. Unit consistency is required. For this reason, the user is expected to employ the same measurement units used to define the Space Width.
- \# of Simulations - the number of random fields to be generated.

OUTPUT

After pressing the Start button, the user is prompted to select an "output folder", which is where all of the results will be saved. The folder selection dialog provides the option to create a new folder, which is recommended in most cases in order to separate the Random Fields files from other unrelated files found in the hard disk:

After the simulation is complete, the output folder will contain a JPG image per simulation and a single Excel file (res.xlsx) containing numeric data. Each tab in the Excel file contains the matrix of resulting values for the parameter of interest, P, in a specific random field:

\square	A	B	C	D	E	F	G	H	I	J	K
1	row ${ }^{\text {col }}$	1	2	3	4	5	6	7	8	9	10
2	1	4.226384	3.915535	5.055803	6.849162	6.963531	7.280513	4.889218	4.801708	5.58827	5.156467
3	2	3.918476	3.573768	4.942797	5.001861	6.358929	6.242169	5.139912	6.800515	3.889277	3.57912
4	3	5.804961	3.248868	5.354262	8.230794	5.919542	7.165933	7.801637	6.872674	6.893444	3.082758
5	4	4.598666	3.714404	5.430403	4.973477	7.468272	8.215398	9.34551	7.969513	5.493206	5.044277
6	5	3.590795	4.908747	7.580526	4.568655	5.305953	5.873396	9.48351	6.725922	5.055335	4.169854
7	6	6.077595	7.911042	4.965393	6.474461	5.467071	6.795899	7.102967	6.41764	4.504581	5.324412
8	7	6.751131	5.621131	6.480863	7.113449	6.429521	8.250874	7.096396	4.519384	5.294982	5.644462
9	8	6.037898	7.96689	6.926942	8.382768	5.098841	6.82826	5.687754	5.350501	6.595993	5.560583
10	9	6.061109	6.710507	5.685835	6.271008	4.797267	4.997224	4.658688	5.141289	6.679546	3.829793
11	10	6.589371	8.078295	6.620778	5.395964	5.042032	5.215538	4.143036	4.988658	7.094878	5.609315
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
14	1*M 1	$2 / 3 / 4$	5 绞								

A graphical representation of the random field in tab \mathbf{X} of the Excel file can be found in the image with the name X.jpg located inside the output folder:

A DARKER section indicates a LOWER value of parameter \mathbf{P}.

EXAMPLE 1 - MARKETING A NEW PRODUCT

A company wants to know how profitable it will be to market its new product, taking into account that there are many uncertainties associated with market size, expenses, and revenue. The governing equation is:

$$
\text { Profit }=\text { Income }- \text { Expenses }
$$

The income from the marketing effort is given by the number of sales (\mathbf{S}) multiplied by the profit per sale (\mathbf{P}). The number of sales resulting from the marketing campaign is equal to the number of monthly leads (L) multiplied by the conversion rate (\mathbf{R}), where the conversion rate indicates the percentage of leads that result in a sale. Thus:

$$
\text { Income }=L \times R \times P
$$

The expenses can be divided into two types of costs: fixed costs (K) and variable costs (\mathbf{V}). Unlike fixed costs, variable costs depend on the number of leads per month (L) and the cost of a single lead (C) that is charged by the marketing company. As a result:

$$
\text { Expenses }=K+L \times C
$$

Consequently, the model to be run is expressed by:

$$
\text { Profit }=L \times R \times P-(K+L \times C)
$$

A market research and previous data have led to the following expected distributions for the 5 different variables of interest:

Variable	Distribution	Explanation
\mathbf{L}	Uniform with 1200 as a minimum and 1800 as a maximum Normal with mean of 3% and standard deviation of 1%	1200 is guaranteed by the marketing company, while 1800 is the most optimistic prediction from the market research
\mathbf{P}	The profit per sale follows a from previous marketing efforts triangular distribution with $\$ 50$ as its mode, $\$ 47$ as its minimum, and $\$ 60$ as its maximum	While the company has a margin of $\$ 60$ when the client uses cash as a payment method, the most popular payment method is credit card, which results in profits of $\$ 50$ per unit. Lastly, there are payments by check, which yield a unit profit of $\$ 47$.
\mathbf{K}	Deterministic value of $\$ 800$ Uniform between $\$ 0.20$ and $\$ 0.80$	Value specified in the contract with the marketing company. The cost of obtaining a lead depends on the medium used (internet, phone, etc) and on the hour of the day (extra hours or normal labor hours).

The Mean and Standard Deviation convergence graphs show that the simulation does indeed converge to specific values, indicating that the information of the normalized and cumulative histograms can be used for further analysis. According to the Anderson-Darling goodness-of-fit statistic, the best probability distribution for the nondeterministic monthly profit obtained through the marketing of the company's new product is a Normal distribution with mean $\$ 804.03$ and standard deviation $\$ 854.73$.

From the cumulative histogram, one may see that there is approximately a 16% chance of losing money by carrying out the marketing campaign throughout a month. Also, the expected return on investment is approximately 52% ($\$ 804.03$ from an average investment [or expenses] of $\$ 1550$). Thus, depending on the company's risk perception, the project may be considered attractive or not.

A beam is to be designed to withstand the following loads with 95% reliability:

Taken from (Sprecace)
The maximum moment for the design needs to be determined when design parameters follow known distributions:

Variable	Distribution	Explanation
w	Uniform with a minimum of $10 \mathrm{kN} / \mathrm{m}$ (1 ton) and maximum of $18 \mathrm{kN} / \mathrm{m}$	The expected dead load is $10 \mathrm{kN} / \mathrm{m}$, while the maximum expected live load is $8 \mathrm{kN} / \mathrm{m}$.
b	Beta distribution with an alpha of 5, beta of 3 , lower bound of 5 meters, and upper bound of 20 meters	The lower and upper bounds come from the dimensions of the beam itself and from the objects to be placed on the beam, while the alpha and beta parameters are such that the distribution is skewed to the right.
L	Deterministic value of 20 meters	Given in the architectural designs.
e	Normal with mean of 10 meters and standard deviation of 1 meter.	The loads tend to be located on the center of the beam.
d	It is actually L-e	No distribution is needed for this variable, as it can be calculated from L and e.

Running the Example 2 model 10,000 times in simple Monte Carlo mode:

The Mean and Standard Deviation convergence graphs show that the simulation does indeed converge to specific values, indicating that the information of the normalized and cumulative histograms can be used for further analysis. According to the Anderson-Darling goodness-of-fit statistic, the best probability distribution for the maximum moment on the beam resulting from the variable loads to be sustained is a Gamma distribution with an alpha of $\mathbf{2 5 . 2 3}$ and lambda of $\mathbf{0 . 0 4}$, where values are expressed in $\mathbf{k N *}$.

According to the cumulative histogram, the design moment should be approximately 825 kN * m to achieve a 95% reliability.

Annis, C. "Goodness-of-Fit tests for Statistical Distributions." Retrieved 05/17/2010, from http://www.statisticalengineering.com/goodness.htm.

Caro, S., E. Masad, et al. (2011). "Stochastic micromechanical model of the deterioration of asphalt mixtures subject to moisture diffusion processes." International Journal for Numerical and Analytical Methods in Geomechanics 35(10): 1079-1097.

EncyclopediaOfStatistics. "Quartiles." Retrieved 05/17/2010, from http://books.google.com/books?id=56LkkdZPpyoC\&pg=PT19\&lpg=PT19.

ERI. "Kolmogorov-Smirnov Test." Retrieved 05/17/2010, from http://www.eridlc.com/onlinetextbook/index.cfm?fuseaction=textbook.appendix\&FileName=Table7.

Lane2, D. "Standard Deviation and Variance." Retrieved 05/17/2010, from http://davidmlane.com/hyperstat/A16252.html.

Lane, D. "Computing Pearson's Correlation Coefficient." Retrieved 05/17/2010, from http://davidmlane.com/hyperstat/A51911.html.

MathsRevision.net. "Box and Whisker Diagrams." Retrieved 05/17/2010, from http://www.mathsrevision.net/alevel/pages.php?page=50.

Microsystems, S. "Math JAVA J2SE." Retrieved 05/17/2010, from http://java.sun.com/i2se/1.4.2/docs/api/java/lang/Math.html.

MSDN, M. "Modulus Operator (\%)." Retrieved 05/17/2010, from http://msdn.microsoft.com/enus/library/h6zfzfy7(VS.80).aspx.

ReliaSoftCorp. "Critical Values for Cramér-von Mises Test." Retrieved 05/17/2010, from http://www.weibull.com/RelGrowthWeb/Appendix B Critical Values for_Cramer-von Mises Test.htm.

SEMATECH1, N. "Kolmogorov-Smirnov Goodness-of-Fit Test." Retrieved 05/17/2010, from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm.

SEMATECH2, N. "Anderson-Darling Test." Retrieved 05/17/2010, from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm.

SEMATECH3, N. "Measures of Skewness and Kurtosis." Retrieved 05/17/2010, from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm.

Simard, R. "Package umontreal.iro.lecuyer.probdist." Retrieved 05/17/2010, from http://www.iro.umontreal.ca/~simardr/ssi/doc/html/umontreal/iro/lecuyer/probdist/package-summary.html.

Sprecace, A. "Beam Load Equations." Retrieved 05/17/2010, from http://www.sprecace.com/node/43.

Weisstein2, E. W. "Arithmetic Mean." Retrieved 05/17/2010, from
http://mathworld.wolfram.com/ArithmeticMean.html.

Weisstein3, E. W. "Variance." Retrieved 05/17/2010, from http://mathworld.wolfram.com/Variance.html.

Weisstein, E. W. "Standard Deviation." Retrieved 05/17/2010, from http://mathworld.wolfram.com/StandardDeviation.html.

