
 

AN INTRODUCTION TO RELIABILITY ANALYSIS 

Every real-life system has a capacity (or resistance) for doing something and is subjected to some sort of demand 

(or load). Both capacity and demand may change depending on various factors and those factors can be viewed as 

random variables. When demand exceeds the capacity of the system, a system failure is reached, given that the 

system cannot offer the service that it was designed to provide. While some system’s failure can be permanent, 

other system’s failure can be only temporary. Here are a few examples of real-life systems and some of the factors 

that could influence their capacities and demands: 

System Description Some Factors 

Highway A highway’s capacity and demand can be measured in 
terms of vehicles per hour. This system is designed to 
facilitate transportation. When it fails, people refer to 
the condition as a traffic jam and it can go back to 
working condition after the rush hour is over. 

-Capacity may depend on the weather. 
-Demand may depend on the price of 
the highway’s tolls. 

Web Site Server A web site’s capacity and demand can be measured in 
terms of hits per second. This system is designed to 
provide some sort of digital data. When it fails, the 
system may require some sort of human intervention 
in order to go back up. 

- Capacity may depend on the type of 
content being requested from the web 
site (video, images, etc). 
- Demand may depend on the popularity 
of the web site’s content. 

Building A building’s capacity and demand can be measured in 
terms of units of force per unit area (N/m

2
, lb/ft

2
, 

etc). This system is designed to provide a variety of 
services (housing, offices, commerce, etc). When it 
fails, the failure is usually permanent and requires 
some sort of intervention to be re-established. 

- Capacity may depend on the quality of 
the construction process. 
- Demand may depend on the 
distribution of the loads. 

All of the factors mentioned in the table above have one thing in common: they can be estimated, but they are 

expected to vary within a certain range, with some values being more probable than others. As such, each of them 

constitutes a random variable. 

THE LIMIT STATE FUNCTION 

A system’s reliability is modeled by what is known as its limit state function, represented with the letter g. The 

limit state function returns a negative value under system failure conditions and a positive value when the system 

is stable. Therefore, it can be viewed as the difference between resistance, R, and load, S: 
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The limit state function is what separates the safe region from the failure region, as depicted in the graph below: 

 

FAILURE PROBABILITY 

As previously mentioned, the resistance and load of a system both depend on random variables. Consequently, 

they each have a probability distribution (fS(S) and fR(R)), which in turn combine to generate a joint probability 

density function, fRS(R,S): 

 

If the joint probability density function is known, the probability of failure (i.e. falling in the failure region) can be 

calculated directly: 
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The equation above can be generalized to N different dimensions, which is important since R and S aren’t usually 

found explicitly in a limit state function and tend to be expressed in terms of their components. Most of the times, 

the probability distributions of R and S are too complex because of the amount of factors affecting them, so they 

cannot be determined in a mathematical way and would require some sort of simulation-based analysis to be run 

beforehand. For simplicity, it is better to work with an N-dimensional limit state function, leading to a 

generalization: 

 

In words, the generalization says that the probability of failure of a system associated with an N-dimensional 

limit state function is equal to the probability of falling in the region where the limit state function is less than 0. 

 

BASIC FILE OPERATIONS 

2R Rel is capable of reading and writing .2rr files, which contain the complete description of a specific reliability 

model: 

1. The model’s equation (limit state function). 

2. All the variables and their corresponding probability distribution where appropriate, along with the 

pertinent parameters. 

3. The correlation matrix. 

These files are the means for 2R Rel users to save their work, as well as the medium of distribution of models that 

could be of interest to other 2R Rel users. 

 

SAVING MODELS 

Even if a model isn’t yet complete, a user can decide to save its information for later use. In order to do this, the 

user must navigate through the File menu and select the Save or Save As… option: 

 

The difference between Save and Save As… is that, while Save will only ask for the file’s name and destination 

once and will then overwrite that same file on any subsequent uses, Save As… will ask for the file’s name and 

destination every time it is invoked. Thus, Save As… is to be used whenever a user wants to save modifications 

made to a file without modifying the base file. 

 

 



OPENING MODELS  

In order to load the information contained inside a .2rr file, the user must navigate through the File menu and 

select the Open option: 

 

If no errors occur, the loaded model is shown in the Main tab (equation, variables, and correlation matrix). 



BASICS 

GRAPHS 

All of the graphs generated in 2R Soft provide a wide array of options in the form of a context menu. The context 

menu appears when you right-click over a graph: 

 

PROPERTIES PANE 

If you select the Properties… option, a properties pane appears. The properties pane lets you change the graph 

title, axis names, axis ranges, and font size. 

 

 

 

 



COPY AND SAVE AS… 

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft 

Word, Microsoft PowerPoint, etc). 

Meanwhile, if Save As… is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting 

the desired output folder and file name: 

 

PRINT 

The Print option does just that: it sends the graph to the printer of your choice (local or networked): 

 

SCALE OPTIONS 

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is 

needed for an axis, we highly recommend the Properties Pane. 



MANUAL ZOOM IN 

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you’re interested in a specific 

region, hold your left-click and drag the mouse to generate a highlighted box around that region: 

 

The end result: 

 

EQUATION EDITOR 

User-entered equations are common in 2R Soft. This section of the document explains the use of the equation 

editor. 

FUNCTIONS AND OPERATIONS 

Equations can contain the following functions and operations: 

Function/Op. Description Usage (A and B are declared variables or 
numeric values) 

+ Addition. A+B 
Example: 4+7=11 

- Subtraction. A-B 
Example: 4-7=-3 

* Multiplication. A*B 
Example: 4*7=28 

/ Division. A/B  
Example: 6/4=1.5 

^ Returns the value of the first operand raised to the power of the 
second operand. (Microsystems) 

A^B 
Example: 5^3=125 
Example: 5^(-3)=1/125 

% Modulo operation. Divides the value of one expression by the value 
of another, and returns the remainder. (MSDN) 

A%B 
Example: 7%3=1 
Example: 67%10=7 

cos Returns the trigonometric cosine of an angle. (Microsystems) cos(A), where A is in radians 
Example: cos(3.14)   1.0 



sin Returns the trigonometric sine of an angle. (Microsystems) sin(A), where A is in radians 
Example: sin(3.14)   0.0 

tan Returns the trigonometric tangent of an angle.  (Microsystems) tan(A), where A is in radians 
Example: tan(3.14)   0.0 

acos Returns the arc cosine of an angle, in the range of 0.0 through pi. 
(Microsystems) 

acos(A), where A is the value whose arc cosine is 
to be returned. 
Example: acos(1)=0.0 

asin Returns the arc sine of an angle, in the range of -pi/2 through pi/2 
(Microsystems) 

asin (A), where A is the value whose arc sine is to 
be returned. 
Example: asin(0)=0.0 

atan Returns the arc tangent of an angle, in the range of -pi/2 
through pi/2. (Microsystems) 

atan(A), where A is the value whose arc tangent 
is to be returned. 
Example: atan(0)=0.0 

sqrt Returns the correctly rounded positive square root of a positive real 
number. (Microsystems) 

sqrt(A), where A is a real positive number. 
Example: sqrt(9)=3 

sqr Returns the value of the argument squared (to the power of 2). sqr(A) 
Example: sqr(-4)=16 
Example: sqr(2)=4 

ln Returns the natural logarithm (base e) of a real value. (Microsystems) ln(A), where A is a positive real number greater 
than zero. 
Example: ln(1)=0 
Example: ln(e^2)=2 

min Returns the smaller of two real values. That is, the result is the value 
closer to negative infinity. (Microsystems) 

min(A,B) 
Example: min(4,9)=4 
Example: min(-4,-11)=-11 

max Returns the greater of two real values. That is, the result is the 
argument closer to positive infinity. If the arguments have the same 
value, the result is that same value. (Microsystems) 

max(A,B) 
Example: max(4,9)=9 
Example: max(-4,-11)=-4 

ceil Returns the smallest (closest to negative infinity) real value that is not 
less than the argument and is equal to a mathematical integer. 
(Microsystems) 

ceil(A) 
Example: ceil(9.23)=10 
Example: ceil(-1.25)=-1 

floor Returns the largest (closest to positive infinity) value that is not 
greater than the argument and is equal to a mathematical integer 
(Microsystems) 

floor(A) 
Example: floor(9.23)=9 
Example: floor(-1.25)=-2 

abs Returns the absolute value of a real value. If the argument is not 
negative, the argument is returned. If the argument is negative, the 
negation of the argument is returned.  (Microsystems) 

abs(A) 
Example: abs(4.15)=4.15 
Example: abs(-4.3)=4.3 
Example: abs(0)=0 

neg Changes the sign of the value received as an argument (negative to 
positive or positive to negative). 

neg(A) 
Example: neg(-1)=1 
Example: neg(1)=-1 
Example: neg(0)=0 

rnd Returns a pseudo-random real value between 0.0 (included) and the 
value received as an argument (excluded). 

rnd(A) 
Example: rnd(50)=0,1.45,2.78,49.9 
Example: rnd(-20)=0,-1.45,-18.392,-19.61 

exp Returns Euler's number e raised to the power of 
a real value. (Microsystems) 

exp(A) 
Example: exp(0)=1 
Example: exp(1)=e 
Example: exp(-2)=1/(e2) 

log Returns the logarithm (base 10) of a real value. (Microsystems) log(A), where A is a positive real number greater 
than zero. 
Example: log(1)=0 
Example: log(10^2)=2 

 

 

 

 

 

 



PROBABILITY DISTRIBUTION TYPES 

When declaring a variable with a known distribution, the user can select one of many types of probability 

distributions. 

Distribution Description Parameters 

Beta The beta distribution has shape parameters α > 0 and β > 0 over the 
interval (a, b), where a < b. 
 
It has density: 
f (x) = (x - a)α-1(b - x)β-1/[B(α, β)(b - a)α+β-1] 
for a < x < b, and 0 elsewhere. 
 
It has the following distribution function: 
F(x) = Iα, β(x) = ∫a

x(ξ - a)α-1(b - ξ)β-1/[B(α, β)(b - a)α+β-1]dξ,  for a < x < b 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – shape parameter, beta > 0 
a – lower bound of the interval 
b – upper bound of the interval, b > a 

Binomial The binomial distribution with parameters n and p, where n is a 
positive integer and 0 <= p <= 1. Its mass function is given by: 
p(x) = nCr(n, x)px(1 - p)n-x = n!/[x!(n - x)!]  px(1 - p)n-x  for x = 0, 1, 2,…n, 
 
and its distribution function is: 
F(x) = ∑j=0

xnCr(n, j)  pj(1 - p)n-j        for x = 0, 1, 2,…n, 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

p – probability of success on each trial 
       (0  p 1) 
n – number of trials (integer),  n > 0 

Chi Square The chi-square distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = x(n/2)-1e-x/2/(2n/2Γ(n/2)),         for x > 0 
where Γ(x) is the gamma function. The chi-square distribution is a 
special case of the gamma distribution with shape parameter n/2 and 
scale parameter1/2. 
 
(Simard) 

n – degrees of freedom (integer), n>0 

Deterministic Distribution that represents a constant value, val. Consequently: 
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Value – any real number 

Discrete Uniform The discrete uniform distribution over the integers in the range [i, j]. Its 
mass function is given by: 
p(x) = 1/(j - i + 1)         for x = i, i + 1,…, j 
and 0 elsewhere. 
 
The distribution function is: 
F(x) = (floor(x) - i + 1)/(j - i + 1)         for i <= x <= j 
and its inverse is: 
F-1(u) = i + (j - i + 1)u        for 0 <= u <= 1. 
 
(Simard) 

Min. – lower bound (integer) 
Max. – upper bound (integer) 
             (Max. > Min.) 

Exponential The exponential distribution with mean 1/λ where λ > 0. Its density is: 
f (x) = λe-λx        for x >= 0, 
its distribution function is: 
F(x) = 1 - e-λx,        for x >= 0, 
and its inverse distribution function is: 
F-1(u) = - ln(1 - u)/λ,        for 0 < u < 1 
 
(Simard) 

Lambda – rate parameter, lambda > 0 

F-Distribution The Fisher F distribution with n and m degrees of freedom, 
where n and m are positive integers. Its density is: 
f (x) = Γ((n + m)/2)nn/2mm/2/[Γ(n/2)Γ(m/2)]x(n-2)/2/(m + nx)(n+m)/2, for x > 0. 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F. 1 – the n degrees of freedom                                                                                
                  (integer), D.O.F. 1 > 0 
D.O.F. 2 – the m degrees of freedom                                                                                
                  (integer), D.O.F. 2 > 0 



Gamma The gamma distribution with shape parameter α > 0 and scale 
parameter λ > 0. The density is: 
f (x) = λαxα-1e-λx/Γ(α),        for x > 0, 
where Γ is the gamma function, defined by: 
Γ(α) = ∫0

∞xα-1e-xdx. 
 
In particular, Γ(n) = (n - 1)! when n is a positive integer. 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 

Geometric The geometric distribution with parameter p, where 0 < p < 1. Its mass 
function is: 
p(x) = p (1 - p)x,        for x = 0, 1, 2,… 
The distribution function is given by: 
F(x) = 1 - (1 - p)x+1,        for x = 0, 1, 2,… 
and its inverse is: 
F-1(u) = floor(ln(1 - u)/ln(1 - p)),        for 0 <= u < 1 
 
(Simard) 

p – probability of success on each trial   
       (0 < p < 1) 

Gumbel The Gumbel distribution, with location parameter δ and scale 
parameter β≠ 0. Using the notation z = (x - δ)/β, it has density: 
f (x) = e-ze-e-z/| β|,        for - ∞ < x < ∞. 
and distribution function: 
F(x) = e-e-z,        for β > 0 
F(x) = 1 - e-e-z,        for β < 0 
 
(Simard) 

Beta – scale parameter, beta   0 
Delta – location parameter, any real  
              number 

Hypergeometric The hypergeometric distribution with k elements chosen 
among l, m being of one type, and l - m of the other. The 
parameters m, k and l are positive integers 
where 1 <= m <= l and 1 <= k <= l. Its mass function is given by: 
 
p(x) = nCr(m, x)nCr(l - m, k - x)/nCr(l, k) 
for max(0, k - l + m) <= x <= min(k, m) 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

m – number of elements of one type  
        (integer),   m > 0 
l – total elements (integer), l > 0 
k – number of elements chosen  
      among l (integer), k > 0 

Logistic The logistic distribution. It has location parameter α and scale 
parameter λ > 0. The density is: 
f (x) = (λe-λ(x-α))/((1 + e-λ(x-α))2)                for - ∞ < x < ∞. 
and the distribution function is: 
F(x) = 1/[1 + e-λ(x-α)]                for - ∞ < x < ∞. 
 
For λ = 1 and α = 0, one can write: 
F(x) = (1+tanh(x/2))/2. 
 
The inverse distribution function is given by: 
F-1(u) = ln(u/(1 - u))/λ + α        for 0 <= u < 1 
 
(Simard) 

Alpha – location parameter, any real  
               number 
Lambda – scale parameter, lambda>0 

Lognormal The lognormal distribution. It has scale parameter μ and shape 
parameter σ > 0. The density is: 
f (x) = ((2π)1/2σx)-1e-(ln(x)-μ)2/(2σ2)    for x > 0, and 0 elsewhere. 
 
The distribution function is: 
F(x) = Φ((ln(x)-μ)/σ)        for x > 0, 
where Φ is the standard normal distribution function. 
 
Its inverse is given by: 
F-1(u) = eμ+σΦ-1(u)        for 0 <= u < 1 
 
If ln(Y) has a normal distribution, then Y has a lognormal distribution 
with the same parameters. 
 
(Simard) 

log mu – scale parameter, any real 
                 number 
log sigma – shape parameter, 
                     log sigma > 0 



Negative Binomial The negative binomial distribution with real parameters γ and p, 
where γ > 0 and 0 <= p <= 1. Its mass function is: 
p(x) = Γ(γ + x)/(x! Γ(γ))pγ(1 - p)x,        for x = 0, 1, 2,… 
where Γ is the gamma function. 
 
If γ is an integer, p(x) can be interpreted as the probability of 
having x failures before the γ-th success in a sequence of 

independent Bernoulli trials with probability of success p.  
 
(Simard) 

Gamma – number of failures until the 
                   experiment is stopped,  
                   Gamma > 0 
p – success probability in each  
       experiment, 0  p 1 

Normal The normal distribution. It has mean μ and variance σ2. Its density 
function is: 
f (x) = e-(x-μ)2/(2σ2)/((2π)1/2σ)   for - ∞ < x < ∞ , where σ > 0. 
 
When μ = 0 and σ = 1, we have the standard normal distribution, with 
corresponding distribution function: 
F(x) = Φ(x) = ∫-∞

xe-t2/2 dt/(2π)1/2        for - ∞ < x < ∞. 
 
(Simard) 

Mean – self-explanatory, any real  
               number 
Standard Deviation – self-explanatory, 
                                       Std. Dev. > 0 

Pareto The Pareto family, with shape parameter α > 0 and location 
parameter β > 0. The density for this type of Pareto distribution is: 
f (x) = αβα/xα+1   for x >= β, and 0 otherwise. 
 
The distribution function is: 
F(x) = 1 - (β/x)α        for x >= β, 
 
and the inverse distribution function is: 
F-1(u) = β(1 - u)-1/α        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – location parameter, beta > 0 

Poisson The Poisson distribution with mean λ >=  0. The mass function is: 
p(x) = e-λλx/(x!),        for x = 0, 1,... 
and the distribution function is: 
F(x) = e-λ∑j=0

x  λj/(j!),        for x = 0, 1,.... 
 
(Simard) 

Lambda – mean, lambda   0 

Student's T The Student-t distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = [Γ((n + 1)/2)/(Γ(n/2)(πn)1/2)][1 + x2/n]-(n+1)/2     for - ∞ < x < ∞, 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F – degrees of freedom (integer), 
               D.O.F > 0 

Triangular The triangular distribution with domain [a, b] and mode (or shape 
parameter) m, where a <= m <= b. The density function is: 

f (x) = 2(x - a)/[(b - a)(m - a)]          for a <= x <= m, 

f (x) = 2(b - x)/[(b - a)(b - m)]          for m <= x <= b, 

f (x) = 0          elsewhere, 

 
the distribution function is: 

F(x) = 0          for x < a, 

F(x) = (x - a)2/[(b - a)(m - a)]          if a <= x <= m, 

F(x) = 1 - (b - x)2/[(b - a)(b - m)]          if m <= x <= b, 

F(x) = 1          for x > b, 

 
and the inverse distribution function is given by: 

F-1(u) = a + ((b - a)(m - a)u)1/2          if 0 <= u <= (m - a)/(b - a), 

F-1(u) = b - ((b - a)(b - m)(1 - u))1/2          if (m - a)/(b - a) <= u <= 1 

 
(Simard) 

a – lower bound of the domain, any  
      real number 
b – upper bound of the domain, any  
       real number 
mode – shape parameter, any real  
               number 
 
“a   mode   b” must be satisfied 

Uniform The uniform distribution over the interval [a, b]. Its density is: 
f (x) = 1/(b - a)     for a <= x <= b, and 0 elsewhere. 
 
The distribution function is: 
F(x) = (x - a)/(b - a)         for a <= x <= b 
 
and its inverse is: 
F-1(u) = a + (b - a)u        for 0 <= u <= 1                             (Simard) 

Min. – lower bound 
Max. – upper bound 
             (Max. > Min.) 



Weibull The Weibull distribution with shape parameter α > 0, location 
parameter δ, and scale parameter λ > 0. The density function is: 
f (x) = αλα(x - δ)α-1e-(λ(x-δ))α        for x > δ. 
 
the distribution function is: 
F(x) = 1 - e-(λ(x-δ))α        for x > δ, 
 
and the inverse distribution function is: 
F-1(u) = (- ln(1 - u))1/α/λ + δ        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 
Delta – location parameter, any real  
              number 

ADDING VARIABLES 

In order to add a variable to a model, the user must left-click over the + button that can be found in the Main tab: 

 

The user will be asked to enter the new variable’s name: 

 

As long as there is no other previously declared variable with the same name as the one entered, the new variable 

will show up in the list of variables. Afterwards, the user must change the variable’s information in the Variable 

Info pane, depending on the type of distribution that is to be assigned to the variable: 

 

 

 

 

 



REMOVING VARIABLES 

Removing variables is straight-forward. The user just needs to select the variable that is to be removed from the 

simulation model in the Variables pane and then left-click over the – button: 

 

In the screenshot above, the variable y would disappear from the model after clicking the – button. 

GRAPHING A SINGLE VARIABLE 

In order to verify that the parameters of the variables coincide with what the user expects, 2R Soft provides the 

option to visualize the PDF (probability density function) and CDF (cumulative density function) curves associated 

with each variable before running a model. 

To view the behavior of a particular variable in graph form, the user must select such variable in the Variables 

pane and then left-click over the Graph button: 

 

 

 

A new window will pop-up with the PDF and CDF curves: 

 

 



MAIN TAB 

EQUATION 

2R Rel only supports explicit equations (limit state functions), and only one equation can be associated with a 

specific model. The equation is to be written in the Main tab: 

 

Refer to the Equation Editor section for information on supported functions and equation syntax in general. 

 

CORRELATIONS MATRIX (CORRELATIONS TABLE) 

The correlation coefficient is a single number between -1 and 1 that describes the dependence between two 

variables. The formula used to compute the correlation coefficient of two variables from experimental data is 

(Lane): 

 

When two variables are independent from each other, their correlation coefficient is equal to 0. On the other 

hand, if two variables are perfectly dependent, their correlation coefficient is equal to 1 (as one increases the 

other one also increases) or -1 (as one increases the other one decreases, and vice-versa). 

During a simulation run, random values of the different variables must be generated. Hence, 2R Rel must take 

correlations into account to make simulations as accurate as possible, since the value generated for a variable 

might influence the probability distribution of another variable in a simulation’s iteration. This information is 

entered by the user in the form of a Correlation Matrix that is shown in the Main tab: 

 

The resulting matrix is always symmetric and shows the multiple dependencies that exist between all the variables 

contained in the current model. To edit a correlation coefficient, the user must double-click over the 

corresponding cell and enter the new value. 

 



RUNNING A RELIABILITY ANALYSIS 

When the reliability model is complete (limit state function, variables, correlation matrix), the analysis process can 

be started by navigating through the Analysis menu and selecting the Run option: 

 

 

MONTE CARLO  

THEORY 

The Monte Carlo algorithm follows the flow chart shown below: (N is the number of simulations to be carried out) 

 

Although the Monte Carlo algorithm is simple, one run can be time-consuming because the generation of random 

numbers and the evaluation of an equation are processor-intensive procedures. Nonetheless, each iteration is 

independent from the rest, which enables the use of a thread pool to run various iterations at the same time 

depending on the amount of processing cores available in the computer running the program. 2R Rel uses the 

thread pool strategy to speed up Monte Carlo runs. 

 

 



INPUT 

To begin a Monte Carlo simulation, the user must select the appropriate radio button after going into the Run 

option found in the Analysis menu: 

 

 N: number of reliability simulations to carry out 

OUTPUT 

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for 

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export 

to Excel button below the table: 

 

In the screenshot above, the system failed on 11 of the 1000 times it was tested, leading to a probability of failure 

of 1.1E-2. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent 

and closer to the real value.  

 

 



LATIN HYPERCUBE 

THEORY 

The Latin Hypercube algorithm uses a sampling process different from the one in the basic Monte Carlo algorithm, 

leading to a better coverage of the sampling space with a smaller number of iterations. As expected, the resulting 

flow chart is more elaborate than the one shown in the previous section: (N is the number of simulations to be 

carried out) 

 
 

As the flow chart shows, the Latin Hypercube algorithm divides the range [0,1] in N partitions of the same size 

(segmentSize), and then takes one value, u, from each of those partitions to generate the random values of the 

variables. The thread pool strategy mentioned in the previous section is also employed by 2R Rel with this 

algorithm, taking into account that the iterations are still independent from each other. 

 

 

 

 



INPUT 

To begin a Latin Hypercube simulation, the user must select the appropriate radio button after going into the Run 

option found in the Analysis menu: 

 

 N: number of reliability simulations to carry out 

OUTPUT 

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for 

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export 

to Excel button below the table: 

 

In the screenshot above, the system failed on 6 of the 1000 times it was tested, leading to a probability of failure of 

6E-3. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent and 

closer to the real value. 

 



ORTHOGONAL LATIN HYPERCUBE 

THEORY 

This algorithm refines the sampling process of the normal Latin Hypercube by dividing the sampling space into 

subspaces with the same probability, where the amount of samples taken from each of those subspaces is the 

same. If each variable’s sampling space is divided into two sections (upper and lower), there will be 2
m

 equally 

probable subspaces to be monitored, being m the number of variables being used. The resulting flow chart is: (N is 

the number of simulations to be carried out, and is a multiple of 2
m

) 

 



As shown in the flow diagram, the Orthogonal Latin Hypercube algorithm is comprised of two cycles: one that 

calculates random values for the variables and another one that picks generated random values according to the 

appropriate subspaces and evaluates the equation with the values picked. The binary form is used as a way to 

assure that each subspace is sampled the same number of times as the rest. As with the previous algorithms, the 

Orthogonal Latin Hypercube is optimized in 2R Rel by using a thread pool due to the independence of the 

iterations. 

INPUT 

To begin a Latin Hypercube simulation, the user must select the appropriate radio button after going into the Run 

option found in the Analysis menu: 

 

 N: number of reliability simulations to carry out 

OUTPUT 

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for 

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export 

to Excel button below the table: 

 

In the screenshot above, the system failed on 7 of the 1000 times it was tested, leading to a probability of failure of 

7E-3. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent and 

closer to the real value. 



FORM (FIRST ORDER RELIABILITY METHOD) 

THEORY 

Note: this section is based on (Lee 2008). Refer to that text to gain a deeper understanding of the topic. 

INTRODUCTION 

A reliability analysis entails the calculation of the probability of failure, denoted by PF, which is defined using a 

multi-dimensional integral (Madsen et al., 1986): 

 

Where X={X1, X2, …, XN}
T
 is an N-dimensional random vector, G(X) is the limit state function such that G(X) < 0 is 

defined as system failure, and fx(x) is a joint probability density function (PDF) of the random variable X. In most 

engineering applications, the exact evaluation of the equation shown above is very difficult or often impossible to 

obtain since fx(x) is generally non-Gaussian and G(X) is highly non-linear. To handle the non-Gaussian fx(x), a 

transformation from the original X-space into the independent standard normal U-space is introduced. In addition, 

FORM approximates G(X) using a First Order Taylor Series Expansion to attenuate its non-linearity. 

TRANSFORMATION TO U-SPACE 

Consider an N-dimensional random vector X with a joint cumulative distribution function (CDF) Fx(x). Let T: X  U 

denote a transformation from X-space to U-space that is defined by Rosenblatt (Rosenblatt, 1952): 

 

The inverse transformation can be obtained from the first equation: 

 



If the N-dimensional random vector X is independent, that is, the joint PDF is given by: 

 

Where fxi(xi) are the marginal PDFs, then the Rosenblatt transformation and the inverse transformation are 

simplified as: 

 

Where Fxi(xi) are the marginal CDFs. 

 

FORM 

To calculate the probability of failure of the system with limit state function G(x) using FORM, it is necessary to find 

the most probable point (MPP), which is defined as the point u* on the limit state function (g(u)=0) closest to the 

origin in the standard normal U-space, as shown below: 

 

The limit state function in U-space is defined as g(u)=G(x(u))=G(x) using the Rosenblatt transformation. Hence, the 

MPP can be found by solving the following optimization problem: 

 

After finding the MPP, the distance from the MPP to the origin is commonly called the Hasofer-Lind reliability 

index (Hasofer and Lind, 1974) and denoted by    , that is,     ‖ 
 ‖. Using the reliability index    , FORM can 

approximate the probability of failure using linear approximation of the limit state function as: 

 

The FORM algorithm used by 2R Rel is fully described in (SÁNCHEZ-SILVA 2010). 2R Rel supposes that the 

random variables are independent and calculates the joint PDF as the multiplication of the independent PDFs. 

 



INPUT 

To begin a FORM analysis, the user must select the appropriate radio button after going into the Run option found 

in the Analysis menu: 

 

No additional user input is required. 

OUTPUT 

The user is presented with the probability of failure drawn from the FORM analysis, along with 3 complimentary 

graphs: 

 The info. section indicates the amount of FORM iterations that were run, N, as well as the probability of 

failure that was obtained, Pf, and its associated Beta. Refer to the Theory section for information on the 

meaning of Beta. 

 
 A graph then shows the components of the Design Point, also known as the Most Probable Point (MPP). 

Refer to the Theory section for information on the meaning of the MPP. 

 
 

 



 Another graph is used to show the directional cosines, which are the components of   in the equation 

  ⃗⃗⃗⃗   ⃗⃗  . As mentioned in the Theory section,   ⃗⃗⃗⃗  is the Most Probable Point (MPP) and   is the Hasofer-

Lind reliability index. 

 
 Last but not least, the partial factors are shown to give an idea of the MPP’s components relative to the 

mean of each variable. 

 

IMPORTANCE SAMPLING 

THEORY 

Note: this section is based on (SÁNCHEZ-SILVA 2010). Refer to that book for a deeper understanding of the topic. 

Normal Monte Carlo analysis failure probabilities are calculated as follows: 

 

Where NF is the number of system failures, N is the number of simulations,  ̂  is the value of the random variables 

in the i-th simulation, and g(  ) is the limit state function. 

Importance sampling focuses on the region of space that contributes the most to the failure probability of a 

system. It uses a new function,  (  ), known as the sampling density function, to such end. Once this function is 

defined, the probability of failure can be calculated as: (Let    (  ) be the joint PDF of the variables involved) 

 



Consequently, the failure probability can be statistically approximated by the equation shown below: 

 

A graphical representation of the Importance Sampling approach in a 2D sampling space would be the following: 

 

SAMPLING FUNCTION 

Selecting  (  ) is no simple task. In 2R Rel, the sampling density function for an N-dimensional sampling space is 

taken to be the multiplication of N normally distributed variables such that: 

 (  )   (     
     ) (     

     )  (     
     ) 

Where  (     
     ) is a normally distributed random variable, xi, with the i-th design point (MPP) component,   

 , 

as its mean and standard deviation,    , equal to the original random variable’s, Xi, standard deviation. 

This function selection enables a higher sampling density in the region of interest. Nonetheless, variable 

independence is assumed, which leads to biased results if the correlation between any pair of variables is 

different to zero. 

DESIGN POINT (MPP) 

The design point or MPP (Most Probable Point),   , is defined as the point on the limit state function (g(  )=0)  

where the maximum value of the joint PDF,    (  ), is obtained. 2R Rel supposes that the random variables are 

independent and calculates the joint PDF as the multiplication of the independent PDFs. The MPP is estimated 

by using numerical methods. 

 

 



ALGORITHM 

The Importance Sampling algorithm is: 

1. Define the limit state function, g(  ). 

2. Define each random variable’s, Xi, probability distribution, as well as the resulting joint PDF,    (  ). 

3. Find the design point or MPP (Most Probable Point),   . 

4. Generate a vector of normally distributed random numbers,  ̂ , with     as mean. Then, calculate  ( ̂ ) as 

 (     
     ) (     

     )  (     
     ), where  (     

     ) is the j-th component of  ̂ . 

5. Calculate the failure probability of the iteration: 

 
6. Repeat steps 4 and 5 until N simulations are completed. 

7. The final failure probability will be given by: 

 

 

INPUT 

To begin an Importance Sampling analysis, the user must select the appropriate radio button after going into the 

Run option found in the Analysis menu: 

 

 N: the number of simulations to carry out for the analysis. Refer to the Theory section to gain some 

understanding on the logic behind the algorithm. 

 

 

 

 



OUTPUT 

The analysis output comes in the form of a basic summary (Info. section) and a step-by-step description (data 

table). 

 The Info. section summarizes the number of iterations that were run, N, as well as the probability of 

failure that was obtained, Pf. 

 The data table contains the information of each iteration per row. The first row shows the coordinates of 

the estimated design point (MPP) and the joint probability density function’s value on that point. Some 

rows are left with blank values for  ( ̂ ) and  ( ̂ ), since a positive limit state function,  ( ̂ )   , leads 

to an associated failure probability, Pfi, equal to zero regardless of those two values. Refer to the Theory 

section for more information on the meaning of the columns presented in the data table. 

 



SUBSET SIMULATION (SUBSET SAMPLING) 

THEORY 

Note: this section is a word-by-word copy of the content found in ((Dresden)). We invite you to visit that web site 

to learn more about uncertainty in engineering. 

The basic idea of subset sampling is the subdivision of the failure event into a sequence of m partial failure events 

(subsets) F1, F2, ···, Fm = F. Generally, the determination of small failure probabilities PF with the aid of Monte Carlo 

simulation requires the expensive simulation of rare events. The division into subsets (subproblems) offers the 

possibility to transfer the simulation of rare events into a set of simulations of more frequent events. The 

determination of the failure regions Fi can be effected by presetting a series gi|i=1...m of limit values, whereas m 

denotes the (unknown) total number of subsets. 

 
This enables the computation of the failure probability as a product of conditional probabilities P(Fi+1|Fi) and P(F1). 

 
The determination of the failure regions Fi and subsequently the partial failure probabilities Pi =P(Fi+1 | Fi) 

influences the accuracy of the simulation. It is convenient to specify the limit values g i|i=1...m  so that nearly equal 

partial failure probabilities Pi|i=2...m are obtained for each subset. Unfortunately, it is difficult to specify the limit 

values gi in advance according to the prescribed probability Pi. Therefore the limit  values have to be determined 

adaptively within the simulation. 

ALGORITHM 

In the first step the probability P1=P(F1) is determined by application of the direct Monte Carlo simulation. 

 
To obtain conditional probabilities P(Fi+1|Fi) the evaluation of the respective probability functions 

 
is necessary. With the application of the Markov Chain Monte Carlo (MCMC) simulation in conjunction with the 

Metropolis-Hastings algorithm samples may be generated in a numerically efficient way according to f(x|Fi).  

 
The starting sample of the subset i+1 is selected randomly from the samples x

(i)
|gi(x

(i)
) < gi, i=1,...,m−1 of subset i 

that are located in the failure region Fi. The limit value gi of the i-th partial subset is determined adaptively during 

the simulation. Therefore, gi is determined from a list of ascending sorted tuple (xk
(i)

, g(xk
(i)

))|k=1,...,Ni according to 

the values g(xk
(i)

). The limit value gi is given by 

 



Under the condition gi<0 the last subset m of the simulation has been reached. The last failure probability 

P(Fm|Fm−1) can be estimated with 

 
The failure probability PF may now be computed as 

 

The subset sampling algorithm is exemplified for three subsets in the following picture: 

 

The Subset Simulation algorithm used by 2R Rel is fully described in (SÁNCHEZ-SILVA 2010). 

INPUT 

To begin a Subset Simulation analysis, the user must select the appropriate radio button after going into the Run 

option found in the Analysis menu 

 

 N: the amount of samples to be generated per subset. 

 p: the cutoff probability of the subsets. For example, if p=0.1 and N=1000, only the 100 (that is, N*p) 

generated values with the lowest values of g(x) in a subset are retained to generate the next subset. 



OUTPUT 

The analysis output comes in the form of a basic summary (Info. section) and a step-by-step description (data 

table). 

 The Info. section summarizes the number of subsets that were generated, N, as well as the probability of 

failure that was obtained, Pf. 

 The data table is generated for each subset. To view a different subset, press the [<<] and [>>] buttons. 

The table’s contents are sorted by ascending value of G_final. 

 For each subset, the cutoff value of g(x) (or G_final) is represented by ci. For example, in the results 

shown below, only the points with G_final   2.27866 were retained from the first subset. 

 Each row contains the coordinates for each generated point and its corresponding g(x) in the G(r) column. 

The G_final column shows the final value of g(x) for a point after being processed by the Markov Chain 

Monte Carlo (MCMC) and Metropolis-Hastings algorithms. The G_final column contains the only g(x) 

values that matter. 

 

REPORT GENERATION 

2R Rel is capable of exporting all the useful information that results from an analysis process to PDF format. To do 

this, a user must navigate through the Analysis menu and select the Generate Report option. This option will only 

be enabled if a successful run has been completed. 

 

The user is then prompted for the new report’s name and location before 2R Rel creates the PDF file. 
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