

AN INTRODUCTION TO RELIABILITY ANALYSIS

Every real-life system has a capacity (or resistance) for doing something and is subjected to some sort of demand

(or load). Both capacity and demand may change depending on various factors and those factors can be viewed as

random variables. When demand exceeds the capacity of the system, a system failure is reached, given that the

system cannot offer the service that it was designed to provide. While some system’s failure can be permanent,

other system’s failure can be only temporary. Here are a few examples of real-life systems and some of the factors

that could influence their capacities and demands:

System Description Some Factors

Highway A highway’s capacity and demand can be measured in
terms of vehicles per hour. This system is designed to
facilitate transportation. When it fails, people refer to
the condition as a traffic jam and it can go back to
working condition after the rush hour is over.

-Capacity may depend on the weather.
-Demand may depend on the price of
the highway’s tolls.

Web Site Server A web site’s capacity and demand can be measured in
terms of hits per second. This system is designed to
provide some sort of digital data. When it fails, the
system may require some sort of human intervention
in order to go back up.

- Capacity may depend on the type of
content being requested from the web
site (video, images, etc).
- Demand may depend on the popularity
of the web site’s content.

Building A building’s capacity and demand can be measured in
terms of units of force per unit area (N/m

2
, lb/ft

2
,

etc). This system is designed to provide a variety of
services (housing, offices, commerce, etc). When it
fails, the failure is usually permanent and requires
some sort of intervention to be re-established.

- Capacity may depend on the quality of
the construction process.
- Demand may depend on the
distribution of the loads.

All of the factors mentioned in the table above have one thing in common: they can be estimated, but they are

expected to vary within a certain range, with some values being more probable than others. As such, each of them

constitutes a random variable.

THE LIMIT STATE FUNCTION

A system’s reliability is modeled by what is known as its limit state function, represented with the letter g. The

limit state function returns a negative value under system failure conditions and a positive value when the system

is stable. Therefore, it can be viewed as the difference between resistance, R, and load, S:

 ()

The limit state function is what separates the safe region from the failure region, as depicted in the graph below:

FAILURE PROBABILITY

As previously mentioned, the resistance and load of a system both depend on random variables. Consequently,

they each have a probability distribution (fS(S) and fR(R)), which in turn combine to generate a joint probability

density function, fRS(R,S):

If the joint probability density function is known, the probability of failure (i.e. falling in the failure region) can be

calculated directly:

 ∫ ∫ ()

The equation above can be generalized to N different dimensions, which is important since R and S aren’t usually

found explicitly in a limit state function and tend to be expressed in terms of their components. Most of the times,

the probability distributions of R and S are too complex because of the amount of factors affecting them, so they

cannot be determined in a mathematical way and would require some sort of simulation-based analysis to be run

beforehand. For simplicity, it is better to work with an N-dimensional limit state function, leading to a

generalization:

In words, the generalization says that the probability of failure of a system associated with an N-dimensional

limit state function is equal to the probability of falling in the region where the limit state function is less than 0.

BASIC FILE OPERATIONS

2R Rel is capable of reading and writing .2rr files, which contain the complete description of a specific reliability

model:

1. The model’s equation (limit state function).

2. All the variables and their corresponding probability distribution where appropriate, along with the

pertinent parameters.

3. The correlation matrix.

These files are the means for 2R Rel users to save their work, as well as the medium of distribution of models that

could be of interest to other 2R Rel users.

SAVING MODELS

Even if a model isn’t yet complete, a user can decide to save its information for later use. In order to do this, the

user must navigate through the File menu and select the Save or Save As… option:

The difference between Save and Save As… is that, while Save will only ask for the file’s name and destination

once and will then overwrite that same file on any subsequent uses, Save As… will ask for the file’s name and

destination every time it is invoked. Thus, Save As… is to be used whenever a user wants to save modifications

made to a file without modifying the base file.

OPENING MODELS

In order to load the information contained inside a .2rr file, the user must navigate through the File menu and

select the Open option:

If no errors occur, the loaded model is shown in the Main tab (equation, variables, and correlation matrix).

BASICS

GRAPHS

All of the graphs generated in 2R Soft provide a wide array of options in the form of a context menu. The context

menu appears when you right-click over a graph:

PROPERTIES PANE

If you select the Properties… option, a properties pane appears. The properties pane lets you change the graph

title, axis names, axis ranges, and font size.

COPY AND SAVE AS…

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft

Word, Microsoft PowerPoint, etc).

Meanwhile, if Save As… is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting

the desired output folder and file name:

PRINT

The Print option does just that: it sends the graph to the printer of your choice (local or networked):

SCALE OPTIONS

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is

needed for an axis, we highly recommend the Properties Pane.

MANUAL ZOOM IN

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you’re interested in a specific

region, hold your left-click and drag the mouse to generate a highlighted box around that region:

The end result:

EQUATION EDITOR

User-entered equations are common in 2R Soft. This section of the document explains the use of the equation

editor.

FUNCTIONS AND OPERATIONS

Equations can contain the following functions and operations:

Function/Op. Description Usage (A and B are declared variables or
numeric values)

+ Addition. A+B
Example: 4+7=11

- Subtraction. A-B
Example: 4-7=-3

* Multiplication. A*B
Example: 4*7=28

/ Division. A/B
Example: 6/4=1.5

^ Returns the value of the first operand raised to the power of the
second operand. (Microsystems)

A^B
Example: 5^3=125
Example: 5^(-3)=1/125

% Modulo operation. Divides the value of one expression by the value
of another, and returns the remainder. (MSDN)

A%B
Example: 7%3=1
Example: 67%10=7

cos Returns the trigonometric cosine of an angle. (Microsystems) cos(A), where A is in radians
Example: cos(3.14) 1.0

sin Returns the trigonometric sine of an angle. (Microsystems) sin(A), where A is in radians
Example: sin(3.14) 0.0

tan Returns the trigonometric tangent of an angle. (Microsystems) tan(A), where A is in radians
Example: tan(3.14) 0.0

acos Returns the arc cosine of an angle, in the range of 0.0 through pi.
(Microsystems)

acos(A), where A is the value whose arc cosine is
to be returned.
Example: acos(1)=0.0

asin Returns the arc sine of an angle, in the range of -pi/2 through pi/2
(Microsystems)

asin (A), where A is the value whose arc sine is to
be returned.
Example: asin(0)=0.0

atan Returns the arc tangent of an angle, in the range of -pi/2
through pi/2. (Microsystems)

atan(A), where A is the value whose arc tangent
is to be returned.
Example: atan(0)=0.0

sqrt Returns the correctly rounded positive square root of a positive real
number. (Microsystems)

sqrt(A), where A is a real positive number.
Example: sqrt(9)=3

sqr Returns the value of the argument squared (to the power of 2). sqr(A)
Example: sqr(-4)=16
Example: sqr(2)=4

ln Returns the natural logarithm (base e) of a real value. (Microsystems) ln(A), where A is a positive real number greater
than zero.
Example: ln(1)=0
Example: ln(e^2)=2

min Returns the smaller of two real values. That is, the result is the value
closer to negative infinity. (Microsystems)

min(A,B)
Example: min(4,9)=4
Example: min(-4,-11)=-11

max Returns the greater of two real values. That is, the result is the
argument closer to positive infinity. If the arguments have the same
value, the result is that same value. (Microsystems)

max(A,B)
Example: max(4,9)=9
Example: max(-4,-11)=-4

ceil Returns the smallest (closest to negative infinity) real value that is not
less than the argument and is equal to a mathematical integer.
(Microsystems)

ceil(A)
Example: ceil(9.23)=10
Example: ceil(-1.25)=-1

floor Returns the largest (closest to positive infinity) value that is not
greater than the argument and is equal to a mathematical integer
(Microsystems)

floor(A)
Example: floor(9.23)=9
Example: floor(-1.25)=-2

abs Returns the absolute value of a real value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned. (Microsystems)

abs(A)
Example: abs(4.15)=4.15
Example: abs(-4.3)=4.3
Example: abs(0)=0

neg Changes the sign of the value received as an argument (negative to
positive or positive to negative).

neg(A)
Example: neg(-1)=1
Example: neg(1)=-1
Example: neg(0)=0

rnd Returns a pseudo-random real value between 0.0 (included) and the
value received as an argument (excluded).

rnd(A)
Example: rnd(50)=0,1.45,2.78,49.9
Example: rnd(-20)=0,-1.45,-18.392,-19.61

exp Returns Euler's number e raised to the power of
a real value. (Microsystems)

exp(A)
Example: exp(0)=1
Example: exp(1)=e
Example: exp(-2)=1/(e2)

log Returns the logarithm (base 10) of a real value. (Microsystems) log(A), where A is a positive real number greater
than zero.
Example: log(1)=0
Example: log(10^2)=2

PROBABILITY DISTRIBUTION TYPES

When declaring a variable with a known distribution, the user can select one of many types of probability

distributions.

Distribution Description Parameters

Beta The beta distribution has shape parameters α > 0 and β > 0 over the
interval (a, b), where a < b.

It has density:
f (x) = (x - a)α-1(b - x)β-1/[B(α, β)(b - a)α+β-1]
for a < x < b, and 0 elsewhere.

It has the following distribution function:
F(x) = Iα, β(x) = ∫a

x(ξ - a)α-1(b - ξ)β-1/[B(α, β)(b - a)α+β-1]dξ, for a < x < b

(Simard)

Alpha – shape parameter, alpha > 0
Beta – shape parameter, beta > 0
a – lower bound of the interval
b – upper bound of the interval, b > a

Binomial The binomial distribution with parameters n and p, where n is a
positive integer and 0 <= p <= 1. Its mass function is given by:
p(x) = nCr(n, x)px(1 - p)n-x = n!/[x!(n - x)!] px(1 - p)n-x for x = 0, 1, 2,…n,

and its distribution function is:
F(x) = ∑j=0

xnCr(n, j) pj(1 - p)n-j for x = 0, 1, 2,…n,
where nCr(n, x) is the number of possible combinations of x elements
chosen among a set of n elements.

(Simard)

p – probability of success on each trial
 (0 p 1)
n – number of trials (integer), n > 0

Chi Square The chi-square distribution with n degrees of freedom, where n is a
positive integer. Its density is:
f (x) = x(n/2)-1e-x/2/(2n/2Γ(n/2)), for x > 0
where Γ(x) is the gamma function. The chi-square distribution is a
special case of the gamma distribution with shape parameter n/2 and
scale parameter1/2.

(Simard)

n – degrees of freedom (integer), n>0

Deterministic Distribution that represents a constant value, val. Consequently:

 () {

 () {

Value – any real number

Discrete Uniform The discrete uniform distribution over the integers in the range [i, j]. Its
mass function is given by:
p(x) = 1/(j - i + 1) for x = i, i + 1,…, j
and 0 elsewhere.

The distribution function is:
F(x) = (floor(x) - i + 1)/(j - i + 1) for i <= x <= j
and its inverse is:
F-1(u) = i + (j - i + 1)u for 0 <= u <= 1.

(Simard)

Min. – lower bound (integer)
Max. – upper bound (integer)
 (Max. > Min.)

Exponential The exponential distribution with mean 1/λ where λ > 0. Its density is:
f (x) = λe-λx for x >= 0,
its distribution function is:
F(x) = 1 - e-λx, for x >= 0,
and its inverse distribution function is:
F-1(u) = - ln(1 - u)/λ, for 0 < u < 1

(Simard)

Lambda – rate parameter, lambda > 0

F-Distribution The Fisher F distribution with n and m degrees of freedom,
where n and m are positive integers. Its density is:
f (x) = Γ((n + m)/2)nn/2mm/2/[Γ(n/2)Γ(m/2)]x(n-2)/2/(m + nx)(n+m)/2, for x > 0.
where Γ(x) is the gamma function

(Simard)

D.O.F. 1 – the n degrees of freedom
 (integer), D.O.F. 1 > 0
D.O.F. 2 – the m degrees of freedom
 (integer), D.O.F. 2 > 0

Gamma The gamma distribution with shape parameter α > 0 and scale
parameter λ > 0. The density is:
f (x) = λαxα-1e-λx/Γ(α), for x > 0,
where Γ is the gamma function, defined by:
Γ(α) = ∫0

∞xα-1e-xdx.

In particular, Γ(n) = (n - 1)! when n is a positive integer.

(Simard)

Alpha – shape parameter, alpha > 0
Lambda – scale parameter, lambda>0

Geometric The geometric distribution with parameter p, where 0 < p < 1. Its mass
function is:
p(x) = p (1 - p)x, for x = 0, 1, 2,…
The distribution function is given by:
F(x) = 1 - (1 - p)x+1, for x = 0, 1, 2,…
and its inverse is:
F-1(u) = floor(ln(1 - u)/ln(1 - p)), for 0 <= u < 1

(Simard)

p – probability of success on each trial
 (0 < p < 1)

Gumbel The Gumbel distribution, with location parameter δ and scale
parameter β≠ 0. Using the notation z = (x - δ)/β, it has density:
f (x) = e-ze-e-z/| β|, for - ∞ < x < ∞.
and distribution function:
F(x) = e-e-z, for β > 0
F(x) = 1 - e-e-z, for β < 0

(Simard)

Beta – scale parameter, beta 0
Delta – location parameter, any real
 number

Hypergeometric The hypergeometric distribution with k elements chosen
among l, m being of one type, and l - m of the other. The
parameters m, k and l are positive integers
where 1 <= m <= l and 1 <= k <= l. Its mass function is given by:

p(x) = nCr(m, x)nCr(l - m, k - x)/nCr(l, k)
for max(0, k - l + m) <= x <= min(k, m)
where nCr(n, x) is the number of possible combinations of x elements
chosen among a set of n elements.

(Simard)

m – number of elements of one type
 (integer), m > 0
l – total elements (integer), l > 0
k – number of elements chosen
 among l (integer), k > 0

Logistic The logistic distribution. It has location parameter α and scale
parameter λ > 0. The density is:
f (x) = (λe-λ(x-α))/((1 + e-λ(x-α))2) for - ∞ < x < ∞.
and the distribution function is:
F(x) = 1/[1 + e-λ(x-α)] for - ∞ < x < ∞.

For λ = 1 and α = 0, one can write:
F(x) = (1+tanh(x/2))/2.

The inverse distribution function is given by:
F-1(u) = ln(u/(1 - u))/λ + α for 0 <= u < 1

(Simard)

Alpha – location parameter, any real
 number
Lambda – scale parameter, lambda>0

Lognormal The lognormal distribution. It has scale parameter μ and shape
parameter σ > 0. The density is:
f (x) = ((2π)1/2σx)-1e-(ln(x)-μ)2/(2σ2) for x > 0, and 0 elsewhere.

The distribution function is:
F(x) = Φ((ln(x)-μ)/σ) for x > 0,
where Φ is the standard normal distribution function.

Its inverse is given by:
F-1(u) = eμ+σΦ-1(u) for 0 <= u < 1

If ln(Y) has a normal distribution, then Y has a lognormal distribution
with the same parameters.

(Simard)

log mu – scale parameter, any real
 number
log sigma – shape parameter,
 log sigma > 0

Negative Binomial The negative binomial distribution with real parameters γ and p,
where γ > 0 and 0 <= p <= 1. Its mass function is:
p(x) = Γ(γ + x)/(x! Γ(γ))pγ(1 - p)x, for x = 0, 1, 2,…
where Γ is the gamma function.

If γ is an integer, p(x) can be interpreted as the probability of
having x failures before the γ-th success in a sequence of

independent Bernoulli trials with probability of success p.

(Simard)

Gamma – number of failures until the
 experiment is stopped,
 Gamma > 0
p – success probability in each
 experiment, 0 p 1

Normal The normal distribution. It has mean μ and variance σ2. Its density
function is:
f (x) = e-(x-μ)2/(2σ2)/((2π)1/2σ) for - ∞ < x < ∞ , where σ > 0.

When μ = 0 and σ = 1, we have the standard normal distribution, with
corresponding distribution function:
F(x) = Φ(x) = ∫-∞

xe-t2/2 dt/(2π)1/2 for - ∞ < x < ∞.

(Simard)

Mean – self-explanatory, any real
 number
Standard Deviation – self-explanatory,
 Std. Dev. > 0

Pareto The Pareto family, with shape parameter α > 0 and location
parameter β > 0. The density for this type of Pareto distribution is:
f (x) = αβα/xα+1 for x >= β, and 0 otherwise.

The distribution function is:
F(x) = 1 - (β/x)α for x >= β,

and the inverse distribution function is:
F-1(u) = β(1 - u)-1/α for 0 <= u < 1

(Simard)

Alpha – shape parameter, alpha > 0
Beta – location parameter, beta > 0

Poisson The Poisson distribution with mean λ >= 0. The mass function is:
p(x) = e-λλx/(x!), for x = 0, 1,...
and the distribution function is:
F(x) = e-λ∑j=0

x λj/(j!), for x = 0, 1,....

(Simard)

Lambda – mean, lambda 0

Student's T The Student-t distribution with n degrees of freedom, where n is a
positive integer. Its density is:
f (x) = [Γ((n + 1)/2)/(Γ(n/2)(πn)1/2)][1 + x2/n]-(n+1)/2 for - ∞ < x < ∞,
where Γ(x) is the gamma function

(Simard)

D.O.F – degrees of freedom (integer),
 D.O.F > 0

Triangular The triangular distribution with domain [a, b] and mode (or shape
parameter) m, where a <= m <= b. The density function is:

f (x) = 2(x - a)/[(b - a)(m - a)] for a <= x <= m,

f (x) = 2(b - x)/[(b - a)(b - m)] for m <= x <= b,

f (x) = 0 elsewhere,

the distribution function is:

F(x) = 0 for x < a,

F(x) = (x - a)2/[(b - a)(m - a)] if a <= x <= m,

F(x) = 1 - (b - x)2/[(b - a)(b - m)] if m <= x <= b,

F(x) = 1 for x > b,

and the inverse distribution function is given by:

F-1(u) = a + ((b - a)(m - a)u)1/2 if 0 <= u <= (m - a)/(b - a),

F-1(u) = b - ((b - a)(b - m)(1 - u))1/2 if (m - a)/(b - a) <= u <= 1

(Simard)

a – lower bound of the domain, any
 real number
b – upper bound of the domain, any
 real number
mode – shape parameter, any real
 number

“a mode b” must be satisfied

Uniform The uniform distribution over the interval [a, b]. Its density is:
f (x) = 1/(b - a) for a <= x <= b, and 0 elsewhere.

The distribution function is:
F(x) = (x - a)/(b - a) for a <= x <= b

and its inverse is:
F-1(u) = a + (b - a)u for 0 <= u <= 1 (Simard)

Min. – lower bound
Max. – upper bound
 (Max. > Min.)

Weibull The Weibull distribution with shape parameter α > 0, location
parameter δ, and scale parameter λ > 0. The density function is:
f (x) = αλα(x - δ)α-1e-(λ(x-δ))α for x > δ.

the distribution function is:
F(x) = 1 - e-(λ(x-δ))α for x > δ,

and the inverse distribution function is:
F-1(u) = (- ln(1 - u))1/α/λ + δ for 0 <= u < 1

(Simard)

Alpha – shape parameter, alpha > 0
Lambda – scale parameter, lambda>0
Delta – location parameter, any real
 number

ADDING VARIABLES

In order to add a variable to a model, the user must left-click over the + button that can be found in the Main tab:

The user will be asked to enter the new variable’s name:

As long as there is no other previously declared variable with the same name as the one entered, the new variable

will show up in the list of variables. Afterwards, the user must change the variable’s information in the Variable

Info pane, depending on the type of distribution that is to be assigned to the variable:

REMOVING VARIABLES

Removing variables is straight-forward. The user just needs to select the variable that is to be removed from the

simulation model in the Variables pane and then left-click over the – button:

In the screenshot above, the variable y would disappear from the model after clicking the – button.

GRAPHING A SINGLE VARIABLE

In order to verify that the parameters of the variables coincide with what the user expects, 2R Soft provides the

option to visualize the PDF (probability density function) and CDF (cumulative density function) curves associated

with each variable before running a model.

To view the behavior of a particular variable in graph form, the user must select such variable in the Variables

pane and then left-click over the Graph button:

A new window will pop-up with the PDF and CDF curves:

MAIN TAB

EQUATION

2R Rel only supports explicit equations (limit state functions), and only one equation can be associated with a

specific model. The equation is to be written in the Main tab:

Refer to the Equation Editor section for information on supported functions and equation syntax in general.

CORRELATIONS MATRIX (CORRELATIONS TABLE)

The correlation coefficient is a single number between -1 and 1 that describes the dependence between two

variables. The formula used to compute the correlation coefficient of two variables from experimental data is

(Lane):

When two variables are independent from each other, their correlation coefficient is equal to 0. On the other

hand, if two variables are perfectly dependent, their correlation coefficient is equal to 1 (as one increases the

other one also increases) or -1 (as one increases the other one decreases, and vice-versa).

During a simulation run, random values of the different variables must be generated. Hence, 2R Rel must take

correlations into account to make simulations as accurate as possible, since the value generated for a variable

might influence the probability distribution of another variable in a simulation’s iteration. This information is

entered by the user in the form of a Correlation Matrix that is shown in the Main tab:

The resulting matrix is always symmetric and shows the multiple dependencies that exist between all the variables

contained in the current model. To edit a correlation coefficient, the user must double-click over the

corresponding cell and enter the new value.

RUNNING A RELIABILITY ANALYSIS

When the reliability model is complete (limit state function, variables, correlation matrix), the analysis process can

be started by navigating through the Analysis menu and selecting the Run option:

MONTE CARLO

THEORY

The Monte Carlo algorithm follows the flow chart shown below: (N is the number of simulations to be carried out)

Although the Monte Carlo algorithm is simple, one run can be time-consuming because the generation of random

numbers and the evaluation of an equation are processor-intensive procedures. Nonetheless, each iteration is

independent from the rest, which enables the use of a thread pool to run various iterations at the same time

depending on the amount of processing cores available in the computer running the program. 2R Rel uses the

thread pool strategy to speed up Monte Carlo runs.

INPUT

To begin a Monte Carlo simulation, the user must select the appropriate radio button after going into the Run

option found in the Analysis menu:

 N: number of reliability simulations to carry out

OUTPUT

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export

to Excel button below the table:

In the screenshot above, the system failed on 11 of the 1000 times it was tested, leading to a probability of failure

of 1.1E-2. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent

and closer to the real value.

LATIN HYPERCUBE

THEORY

The Latin Hypercube algorithm uses a sampling process different from the one in the basic Monte Carlo algorithm,

leading to a better coverage of the sampling space with a smaller number of iterations. As expected, the resulting

flow chart is more elaborate than the one shown in the previous section: (N is the number of simulations to be

carried out)

As the flow chart shows, the Latin Hypercube algorithm divides the range [0,1] in N partitions of the same size

(segmentSize), and then takes one value, u, from each of those partitions to generate the random values of the

variables. The thread pool strategy mentioned in the previous section is also employed by 2R Rel with this

algorithm, taking into account that the iterations are still independent from each other.

INPUT

To begin a Latin Hypercube simulation, the user must select the appropriate radio button after going into the Run

option found in the Analysis menu:

 N: number of reliability simulations to carry out

OUTPUT

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export

to Excel button below the table:

In the screenshot above, the system failed on 6 of the 1000 times it was tested, leading to a probability of failure of

6E-3. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent and

closer to the real value.

ORTHOGONAL LATIN HYPERCUBE

THEORY

This algorithm refines the sampling process of the normal Latin Hypercube by dividing the sampling space into

subspaces with the same probability, where the amount of samples taken from each of those subspaces is the

same. If each variable’s sampling space is divided into two sections (upper and lower), there will be 2
m

 equally

probable subspaces to be monitored, being m the number of variables being used. The resulting flow chart is: (N is

the number of simulations to be carried out, and is a multiple of 2
m

)

As shown in the flow diagram, the Orthogonal Latin Hypercube algorithm is comprised of two cycles: one that

calculates random values for the variables and another one that picks generated random values according to the

appropriate subspaces and evaluates the equation with the values picked. The binary form is used as a way to

assure that each subspace is sampled the same number of times as the rest. As with the previous algorithms, the

Orthogonal Latin Hypercube is optimized in 2R Rel by using a thread pool due to the independence of the

iterations.

INPUT

To begin a Latin Hypercube simulation, the user must select the appropriate radio button after going into the Run

option found in the Analysis menu:

 N: number of reliability simulations to carry out

OUTPUT

The user is presented with the probability of failure (Pf) drawn from the simulated sample, along with data for

every simulation performed. Such data can be exported to Microsoft Excel with no hassle by clicking on the Export

to Excel button below the table:

In the screenshot above, the system failed on 7 of the 1000 times it was tested, leading to a probability of failure of

7E-3. As the amount of simulations, N, increases, the probability of failure is expected to be more consistent and

closer to the real value.

FORM (FIRST ORDER RELIABILITY METHOD)

THEORY

Note: this section is based on (Lee 2008). Refer to that text to gain a deeper understanding of the topic.

INTRODUCTION

A reliability analysis entails the calculation of the probability of failure, denoted by PF, which is defined using a

multi-dimensional integral (Madsen et al., 1986):

Where X={X1, X2, …, XN}
T
 is an N-dimensional random vector, G(X) is the limit state function such that G(X) < 0 is

defined as system failure, and fx(x) is a joint probability density function (PDF) of the random variable X. In most

engineering applications, the exact evaluation of the equation shown above is very difficult or often impossible to

obtain since fx(x) is generally non-Gaussian and G(X) is highly non-linear. To handle the non-Gaussian fx(x), a

transformation from the original X-space into the independent standard normal U-space is introduced. In addition,

FORM approximates G(X) using a First Order Taylor Series Expansion to attenuate its non-linearity.

TRANSFORMATION TO U-SPACE

Consider an N-dimensional random vector X with a joint cumulative distribution function (CDF) Fx(x). Let T: X U

denote a transformation from X-space to U-space that is defined by Rosenblatt (Rosenblatt, 1952):

The inverse transformation can be obtained from the first equation:

If the N-dimensional random vector X is independent, that is, the joint PDF is given by:

Where fxi(xi) are the marginal PDFs, then the Rosenblatt transformation and the inverse transformation are

simplified as:

Where Fxi(xi) are the marginal CDFs.

FORM

To calculate the probability of failure of the system with limit state function G(x) using FORM, it is necessary to find

the most probable point (MPP), which is defined as the point u* on the limit state function (g(u)=0) closest to the

origin in the standard normal U-space, as shown below:

The limit state function in U-space is defined as g(u)=G(x(u))=G(x) using the Rosenblatt transformation. Hence, the

MPP can be found by solving the following optimization problem:

After finding the MPP, the distance from the MPP to the origin is commonly called the Hasofer-Lind reliability

index (Hasofer and Lind, 1974) and denoted by , that is, ‖
 ‖. Using the reliability index , FORM can

approximate the probability of failure using linear approximation of the limit state function as:

The FORM algorithm used by 2R Rel is fully described in (SÁNCHEZ-SILVA 2010). 2R Rel supposes that the

random variables are independent and calculates the joint PDF as the multiplication of the independent PDFs.

INPUT

To begin a FORM analysis, the user must select the appropriate radio button after going into the Run option found

in the Analysis menu:

No additional user input is required.

OUTPUT

The user is presented with the probability of failure drawn from the FORM analysis, along with 3 complimentary

graphs:

 The info. section indicates the amount of FORM iterations that were run, N, as well as the probability of

failure that was obtained, Pf, and its associated Beta. Refer to the Theory section for information on the

meaning of Beta.

 A graph then shows the components of the Design Point, also known as the Most Probable Point (MPP).

Refer to the Theory section for information on the meaning of the MPP.

 Another graph is used to show the directional cosines, which are the components of in the equation

 ⃗⃗⃗⃗ ⃗⃗ . As mentioned in the Theory section, ⃗⃗⃗⃗ is the Most Probable Point (MPP) and is the Hasofer-

Lind reliability index.

 Last but not least, the partial factors are shown to give an idea of the MPP’s components relative to the

mean of each variable.

IMPORTANCE SAMPLING

THEORY

Note: this section is based on (SÁNCHEZ-SILVA 2010). Refer to that book for a deeper understanding of the topic.

Normal Monte Carlo analysis failure probabilities are calculated as follows:

Where NF is the number of system failures, N is the number of simulations, ̂ is the value of the random variables

in the i-th simulation, and g() is the limit state function.

Importance sampling focuses on the region of space that contributes the most to the failure probability of a

system. It uses a new function, (), known as the sampling density function, to such end. Once this function is

defined, the probability of failure can be calculated as: (Let () be the joint PDF of the variables involved)

Consequently, the failure probability can be statistically approximated by the equation shown below:

A graphical representation of the Importance Sampling approach in a 2D sampling space would be the following:

SAMPLING FUNCTION

Selecting () is no simple task. In 2R Rel, the sampling density function for an N-dimensional sampling space is

taken to be the multiplication of N normally distributed variables such that:

 () (
) (

) (
)

Where (
) is a normally distributed random variable, xi, with the i-th design point (MPP) component,

 ,

as its mean and standard deviation, , equal to the original random variable’s, Xi, standard deviation.

This function selection enables a higher sampling density in the region of interest. Nonetheless, variable

independence is assumed, which leads to biased results if the correlation between any pair of variables is

different to zero.

DESIGN POINT (MPP)

The design point or MPP (Most Probable Point), , is defined as the point on the limit state function (g()=0)

where the maximum value of the joint PDF, (), is obtained. 2R Rel supposes that the random variables are

independent and calculates the joint PDF as the multiplication of the independent PDFs. The MPP is estimated

by using numerical methods.

ALGORITHM

The Importance Sampling algorithm is:

1. Define the limit state function, g().

2. Define each random variable’s, Xi, probability distribution, as well as the resulting joint PDF, ().

3. Find the design point or MPP (Most Probable Point), .

4. Generate a vector of normally distributed random numbers, ̂ , with as mean. Then, calculate (̂) as

 (
) (

) (
), where (

) is the j-th component of ̂ .

5. Calculate the failure probability of the iteration:

6. Repeat steps 4 and 5 until N simulations are completed.

7. The final failure probability will be given by:

INPUT

To begin an Importance Sampling analysis, the user must select the appropriate radio button after going into the

Run option found in the Analysis menu:

 N: the number of simulations to carry out for the analysis. Refer to the Theory section to gain some

understanding on the logic behind the algorithm.

OUTPUT

The analysis output comes in the form of a basic summary (Info. section) and a step-by-step description (data

table).

 The Info. section summarizes the number of iterations that were run, N, as well as the probability of

failure that was obtained, Pf.

 The data table contains the information of each iteration per row. The first row shows the coordinates of

the estimated design point (MPP) and the joint probability density function’s value on that point. Some

rows are left with blank values for (̂) and (̂), since a positive limit state function, (̂) , leads

to an associated failure probability, Pfi, equal to zero regardless of those two values. Refer to the Theory

section for more information on the meaning of the columns presented in the data table.

SUBSET SIMULATION (SUBSET SAMPLING)

THEORY

Note: this section is a word-by-word copy of the content found in ((Dresden)). We invite you to visit that web site

to learn more about uncertainty in engineering.

The basic idea of subset sampling is the subdivision of the failure event into a sequence of m partial failure events

(subsets) F1, F2, ···, Fm = F. Generally, the determination of small failure probabilities PF with the aid of Monte Carlo

simulation requires the expensive simulation of rare events. The division into subsets (subproblems) offers the

possibility to transfer the simulation of rare events into a set of simulations of more frequent events. The

determination of the failure regions Fi can be effected by presetting a series gi|i=1...m of limit values, whereas m

denotes the (unknown) total number of subsets.

This enables the computation of the failure probability as a product of conditional probabilities P(Fi+1|Fi) and P(F1).

The determination of the failure regions Fi and subsequently the partial failure probabilities Pi =P(Fi+1 | Fi)

influences the accuracy of the simulation. It is convenient to specify the limit values g i|i=1...m so that nearly equal

partial failure probabilities Pi|i=2...m are obtained for each subset. Unfortunately, it is difficult to specify the limit

values gi in advance according to the prescribed probability Pi. Therefore the limit values have to be determined

adaptively within the simulation.

ALGORITHM

In the first step the probability P1=P(F1) is determined by application of the direct Monte Carlo simulation.

To obtain conditional probabilities P(Fi+1|Fi) the evaluation of the respective probability functions

is necessary. With the application of the Markov Chain Monte Carlo (MCMC) simulation in conjunction with the

Metropolis-Hastings algorithm samples may be generated in a numerically efficient way according to f(x|Fi).

The starting sample of the subset i+1 is selected randomly from the samples x

(i)
|gi(x

(i)
) < gi, i=1,...,m−1 of subset i

that are located in the failure region Fi. The limit value gi of the i-th partial subset is determined adaptively during

the simulation. Therefore, gi is determined from a list of ascending sorted tuple (xk
(i)

, g(xk
(i)

))|k=1,...,Ni according to

the values g(xk
(i)

). The limit value gi is given by

Under the condition gi<0 the last subset m of the simulation has been reached. The last failure probability

P(Fm|Fm−1) can be estimated with

The failure probability PF may now be computed as

The subset sampling algorithm is exemplified for three subsets in the following picture:

The Subset Simulation algorithm used by 2R Rel is fully described in (SÁNCHEZ-SILVA 2010).

INPUT

To begin a Subset Simulation analysis, the user must select the appropriate radio button after going into the Run

option found in the Analysis menu

 N: the amount of samples to be generated per subset.

 p: the cutoff probability of the subsets. For example, if p=0.1 and N=1000, only the 100 (that is, N*p)

generated values with the lowest values of g(x) in a subset are retained to generate the next subset.

OUTPUT

The analysis output comes in the form of a basic summary (Info. section) and a step-by-step description (data

table).

 The Info. section summarizes the number of subsets that were generated, N, as well as the probability of

failure that was obtained, Pf.

 The data table is generated for each subset. To view a different subset, press the [<<] and [>>] buttons.

The table’s contents are sorted by ascending value of G_final.

 For each subset, the cutoff value of g(x) (or G_final) is represented by ci. For example, in the results

shown below, only the points with G_final 2.27866 were retained from the first subset.

 Each row contains the coordinates for each generated point and its corresponding g(x) in the G(r) column.

The G_final column shows the final value of g(x) for a point after being processed by the Markov Chain

Monte Carlo (MCMC) and Metropolis-Hastings algorithms. The G_final column contains the only g(x)

values that matter.

REPORT GENERATION

2R Rel is capable of exporting all the useful information that results from an analysis process to PDF format. To do

this, a user must navigate through the Analysis menu and select the Generate Report option. This option will only

be enabled if a successful run has been completed.

The user is then prompted for the new report’s name and location before 2R Rel creates the PDF file.

BIBLIOGRAPHY

(Dresden), I. o. S. a. D. o. S. T. "Subset Sampling." from http://www.uncertainty-in-
engineering.net/applications/efficiency/subset_sampling.

Lane, D. "Computing Pearson's Correlation Coefficient." Retrieved 05/17/2010, from
http://davidmlane.com/hyperstat/A51911.html.

Lee, I. (2008) RELIABILITY-BASED DESIGN OPTIMIZATION AND ROBUST DESIGNOPTIMIZATION USING UNIVARIATE
DIMENSION REDUCTION METHOD.

Microsystems, S. "Math JAVA J2SE." Retrieved 05/17/2010, from
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html.

MSDN, M. "Modulus Operator (%)." Retrieved 05/17/2010, from http://msdn.microsoft.com/en-
us/library/h6zfzfy7(VS.80).aspx.

SÁNCHEZ-SILVA, M. (2010). INTRODUCCIÓN A LA CONFIABILIDAD Y EVALUACIÓN DE RIESGOS: teoría y aplicaciones
en ingeniería, Universidad de los Andes.

Simard, R. "Package umontreal.iro.lecuyer.probdist." Retrieved 05/17/2010, from
http://www.iro.umontreal.ca/~simardr/ssj/doc/html/umontreal/iro/lecuyer/probdist/package-summary.html.

http://www.uncertainty-in-engineering.net/applications/efficiency/subset_sampling
http://www.uncertainty-in-engineering.net/applications/efficiency/subset_sampling
http://davidmlane.com/hyperstat/A51911.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html
http://msdn.microsoft.com/en-us/library/h6zfzfy7(VS.80).aspx
http://msdn.microsoft.com/en-us/library/h6zfzfy7(VS.80).aspx
http://www.iro.umontreal.ca/~simardr/ssj/doc/html/umontreal/iro/lecuyer/probdist/package-summary.html

	An Introduction to Reliability Analysis
	The Limit State Function
	Failure Probability

	Basic File Operations
	Saving models
	Opening Models

	Basics
	Graphs
	Properties Pane
	Copy and Save As…
	Print
	Scale Options
	Manual Zoom In

	Equation Editor
	Functions and Operations
	Probability Distribution Types
	Adding Variables
	Removing Variables
	Graphing a Single Variable

	Main Tab
	Equation
	Correlations Matrix (Correlations Table)

	Running a Reliability Analysis
	Monte Carlo
	Theory
	Input
	Output

	Latin Hypercube
	Theory
	Input
	Output

	Orthogonal Latin Hypercube
	Theory
	Input
	Output

	FORM (First Order Reliability Method)
	Theory
	Introduction
	Transformation to U-Space
	FORM

	Input
	Output

	Importance Sampling
	Theory
	Sampling Function
	Design Point (MPP)
	Algorithm

	Input
	Output

	Subset Simulation (Subset Sampling)
	Theory
	Algorithm

	Input
	Output

	Report Generation
	Bibliography

