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FINANCIAL VIABILITY 

The financial analysis must be carried out for t=0, which entails the calculation of the project’s Net Present Value: 

 

The discount rate must take two factors into account: 

1. Pure Time Value of Money ( ): the interest rate demanded by an investor for postponing his 

consumption and making available capital to a borrower. 

2. Inflation Premium ( ): if the lender anticipates inflation during the term of loan he demands an extra 

return to compensate for the loss in purchase power of money. 
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FILE OPERATIONS 

2R LCA is capable of reading and writing .2rl files, which contain the complete description of a specific life cycle 

model (approach, deterioration model, analysis parameters, cost function, etc). 

These files are the means for 2R LCA users to save their work, as well as the medium of distribution of models that 

could be of interest to other 2R LCA users. 

SAVING MODELS 

Even if a model isn’t yet complete, a user can decide to save its information for later use. In order to do this, the 

user must navigate through the File menu and select the Save or Save As… option: 

 

The difference between Save and Save As… is that, while Save will only ask for the file’s name and destination 

once and will then overwrite that same file on any subsequent uses, Save As… will ask for the file’s name and 

destination every time it is invoked. Thus, Save As… is to be used whenever a user wants to save modifications 

made to a file without modifying the base file. 

 

OPENING MODELS  

In order to load the information contained inside a .2rl file, the user must navigate through the File menu and 

select the Open option: 

 

If no errors occur, the loaded model is shown in the Main and Cost Function tabs (approach, deterioration model, 

analysis parameters, cost function, etc). 

 



BASICS 

GRAPHS 

All of the graphs generated in 2R Soft provide a wide array of options in the form of a context menu. The context 

menu appears when you right-click over a graph: 

 

PROPERTIES PANE 

If you select the Properties… option, a properties pane appears. The properties pane lets you change the graph 

title, axis names, axis ranges, and font size. 

 

 

 

 



COPY AND SAVE AS…  

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft 

Word, Microsoft PowerPoint, etc). 

Meanwhile, if Save As… is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting 

the desired output folder and file name: 

 

PRINT 

The Print option does just that: it sends the graph to the printer of your choice (local or networked): 

 

SCALE OPTIONS 

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is 

needed for an axis, we highly recommend the Properties Pane. 
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MANUAL ZOOM IN 

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you’re interested in a specific 

region, hold your left-click and drag the mouse to generate a highlighted box around that region: 

 

The end result: 

 

EQUATION EDITOR 

User-entered equations are common in 2R Soft. This section of the document explains the use of the equation 

editor. 

FUNCTIONS AND OPERATIONS 

Equations can contain the following functions and operations: 

Function/Op. Description Usage (A and B are declared variables or 
numeric values) 

+ Addition. A+B 
Example: 4+7=11 

- Subtraction. A-B 
Example: 4-7=-3 

* Multiplication. A*B 
Example: 4*7=28 

/ Division. A/B  
Example: 6/4=1.5 

^ Returns the value of the first operand raised to the power of the 
second operand. (Microsystems) 

A^B 
Example: 5^3=125 
Example: 5^(-3)=1/125 

% Modulo operation. Divides the value of one expression by the value 
of another, and returns the remainder. (MSDN) 

A%B 
Example: 7%3=1 
Example: 67%10=7 

cos Returns the trigonometric cosine of an angle. (Microsystems) cos(A), where A is in radians 
Example: cos(3.14)   1.0 



sin Returns the trigonometric sine of an angle. (Microsystems) sin(A), where A is in radians 
Example: sin(3.14)   0.0 

tan Returns the trigonometric tangent of an angle.  (Microsystems) tan(A), where A is in radians 
Example: tan(3.14)   0.0 

acos Returns the arc cosine of an angle, in the range of 0.0 through pi. 
(Microsystems) 

acos(A), where A is the value whose arc cosine is 
to be returned. 
Example: acos(1)=0.0 

asin Returns the arc sine of an angle, in the range of -pi/2 through pi/2 
(Microsystems) 

asin (A), where A is the value whose arc sine is to 
be returned. 
Example: asin(0)=0.0 

atan Returns the arc tangent of an angle, in the range of -pi/2 
through pi/2. (Microsystems) 

atan(A), where A is the value whose arc tangent 
is to be returned. 
Example: atan(0)=0.0 

sqrt Returns the correctly rounded positive square root of a positive real 
number. (Microsystems) 

sqrt(A), where A is a real positive number. 
Example: sqrt(9)=3 

sqr Returns the value of the argument squared (to the power of 2). sqr(A) 
Example: sqr(-4)=16 
Example: sqr(2)=4 

ln Returns the natural logarithm (base e) of a real value. (Microsystems) ln(A), where A is a positive real number greater 
than zero. 
Example: ln(1)=0 
Example: ln(e^2)=2 

min Returns the smaller of two real values. That is, the result is the value 
closer to negative infinity. (Microsystems) 

min(A,B) 
Example: min(4,9)=4 
Example: min(-4,-11)=-11 

max Returns the greater of two real values. That is, the result is the 
argument closer to positive infinity. If the arguments have the same 
value, the result is that same value. (Microsystems) 

max(A,B) 
Example: max(4,9)=9 
Example: max(-4,-11)=-4 

ceil Returns the smallest (closest to negative infinity) real value that is not 
less than the argument and is equal to a mathematical integer. 
(Microsystems) 

ceil(A) 
Example: ceil(9.23)=10 
Example: ceil(-1.25)=-1 

floor Returns the largest (closest to positive infinity) value that is not 
greater than the argument and is equal to a mathematical integer 
(Microsystems) 

floor(A) 
Example: floor(9.23)=9 
Example: floor(-1.25)=-2 

abs Returns the absolute value of a real value. If the argument is not 
negative, the argument is returned. If the argument is negative, the 
negation of the argument is returned.  (Microsystems) 

abs(A) 
Example: abs(4.15)=4.15 
Example: abs(-4.3)=4.3 
Example: abs(0)=0 

neg Changes the sign of the value received as an argument (negative to 
positive or positive to negative). 

neg(A) 
Example: neg(-1)=1 
Example: neg(1)=-1 
Example: neg(0)=0 

rnd Returns a pseudo-random real value between 0.0 (included) and the 
value received as an argument (excluded). 

rnd(A) 
Example: rnd(50)=0,1.45,2.78,49.9 
Example: rnd(-20)=0,-1.45,-18.392,-19.61 

exp Returns Euler's number e raised to the power of 
a real value. (Microsystems) 

exp(A) 
Example: exp(0)=1 
Example: exp(1)=e 
Example: exp(-2)=1/(e2) 

log Returns the logarithm (base 10) of a real value. (Microsystems) log(A), where A is a positive real number greater 
than zero. 
Example: log(1)=0 
Example: log(10^2)=2 

 

 

 

 

 

 



PROBABILITY DISTRIBUTION TYPES 

When declaring a variable with a known distribution, the user can select one of many types of probability 

distributions. 

Distribution Description Parameters 

Beta The beta distribution has shape parameters α > 0 and β > 0 over the 
interval (a, b), where a < b. 
 
It has density: 
f (x) = (x - a)α-1(b - x)β-1/[B(α, β)(b - a)α+β-1] 
for a < x < b, and 0 elsewhere. 
 
It has the following distribution function: 
F(x) = Iα, β(x) = ∫a

x(ξ - a)α-1(b - ξ)β-1/[B(α, β)(b - a)α+β-1]dξ,  for a < x < b 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – shape parameter, beta > 0 
a – lower bound of the interval 
b – upper bound of the interval, b > a 

Binomial The binomial distribution with parameters n and p, where n is a 
positive integer and 0 <= p <= 1. Its mass function is given by: 
p(x) = nCr(n, x)px(1 - p)n-x = n!/[x!(n - x)!]  px(1 - p)n-x  for x = 0, 1, 2,…n, 
 
and its distribution function is: 
F(x) = ∑j=0

xnCr(n, j)  pj(1 - p)n-j        for x = 0, 1, 2,…n, 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

p – probability of success on each trial 
       (0  p 1) 
n – number of trials (integer),  n > 0 

Chi Square The chi-square distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = x(n/2)-1e-x/2/(2n/2Γ(n/2)),         for x > 0 
where Γ(x) is the gamma function. The chi-square distribution is a 
special case of the gamma distribution with shape parameter n/2 and 
scale parameter1/2. 
 
(Simard) 

n – degrees of freedom (integer), n>0 

Deterministic Distribution that represents a constant value, val. Consequently: 

 ( )  {
          
          

    ( )  {
          
          

 

Value – any real number 

Discrete Uniform The discrete uniform distribution over the integers in the range [i, j]. Its 
mass function is given by: 
p(x) = 1/(j - i + 1)         for x = i, i + 1,…, j 
and 0 elsewhere. 
 
The distribution function is: 
F(x) = (floor(x) - i + 1)/(j - i + 1)         for i <= x <= j 
and its inverse is: 
F-1(u) = i + (j - i + 1)u        for 0 <= u <= 1. 
 
(Simard) 

Min. – lower bound (integer) 
Max. – upper bound (integer) 
             (Max. > Min.) 

Exponential The exponential distribution with mean 1/λ where λ > 0. Its density is: 
f (x) = λe-λx        for x >= 0, 
its distribution function is: 
F(x) = 1 - e-λx,        for x >= 0, 
and its inverse distribution function is: 
F-1(u) = - ln(1 - u)/λ,        for 0 < u < 1 
 
(Simard) 

Lambda – rate parameter, lambda > 0 

F-Distribution The Fisher F distribution with n and m degrees of freedom, 
where n and m are positive integers. Its density is: 
f (x) = Γ((n + m)/2)nn/2mm/2/[Γ(n/2)Γ(m/2)]x(n-2)/2/(m + nx)(n+m)/2, for x > 0. 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F. 1 – the n degrees of freedom                                                                                
                  (integer), D.O.F. 1 > 0 
D.O.F. 2 – the m degrees of freedom                                                                                
                  (integer), D.O.F. 2 > 0 



Gamma The gamma distribution with shape parameter α > 0 and scale 
parameter λ > 0. The density is: 
f (x) = λαxα-1e-λx/Γ(α),        for x > 0, 
where Γ is the gamma function, defined by: 
Γ(α) = ∫0

∞xα-1e-xdx. 
 
In particular, Γ(n) = (n - 1)! when n is a positive integer. 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 

Geometric The geometric distribution with parameter p, where 0 < p < 1. Its mass 
function is: 
p(x) = p (1 - p)x,        for x = 0, 1, 2,… 
The distribution function is given by: 
F(x) = 1 - (1 - p)x+1,        for x = 0, 1, 2,… 
and its inverse is: 
F-1(u) = floor(ln(1 - u)/ln(1 - p)),        for 0 <= u < 1 
 
(Simard) 

p – probability of success on each trial   
       (0 < p < 1) 

Gumbel The Gumbel distribution, with location parameter δ and scale 
parameter β≠ 0. Using the notation z = (x - δ)/β, it has density: 
f (x) = e-ze-e-z/| β|,        for - ∞ < x < ∞. 
and distribution function: 
F(x) = e-e-z,        for β > 0 
F(x) = 1 - e-e-z,        for β < 0 
 
(Simard) 

Beta – scale parameter, beta   0 
Delta – location parameter, any real  
              number 

Hypergeometric The hypergeometric distribution with k elements chosen 
among l, m being of one type, and l - m of the other. The 
parameters m, k and l are positive integers 
where 1 <= m <= l and 1 <= k <= l. Its mass function is given by: 
 
p(x) = nCr(m, x)nCr(l - m, k - x)/nCr(l, k) 
for max(0, k - l + m) <= x <= min(k, m) 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

m – number of elements of one type  
        (integer),   m > 0 
l – total elements (integer), l > 0 
k – number of elements chosen  
      among l (integer), k > 0 

Logistic The logistic distribution. It has location parameter α and scale 
parameter λ > 0. The density is: 
f (x) = (λe-λ(x-α))/((1 + e-λ(x-α))2)                for - ∞ < x < ∞. 
and the distribution function is: 
F(x) = 1/[1 + e-λ(x-α)]                for - ∞ < x < ∞. 
 
For λ = 1 and α = 0, one can write: 
F(x) = (1+tanh(x/2))/2. 
 
The inverse distribution function is given by: 
F-1(u) = ln(u/(1 - u))/λ + α        for 0 <= u < 1 
 
(Simard) 

Alpha – location parameter, any real  
               number 
Lambda – scale parameter, lambda>0 

Lognormal The lognormal distribution. It has scale parameter μ and shape 
parameter σ > 0. The density is: 
f (x) = ((2π)1/2σx)-1e-(ln(x)-μ)2/(2σ2)    for x > 0, and 0 elsewhere. 
 
The distribution function is: 
F(x) = Φ((ln(x)-μ)/σ)        for x > 0, 
where Φ is the standard normal distribution function. 
 
Its inverse is given by: 
F-1(u) = eμ+σΦ-1(u)        for 0 <= u < 1 
 
If ln(Y) has a normal distribution, then Y has a lognormal distribution 
with the same parameters. 
 
(Simard) 

log mu – scale parameter, any real 
                 number 
log sigma – shape parameter, 
                     log sigma > 0 



Negative Binomial The negative binomial distribution with real parameters γ and p, 
where γ > 0 and 0 <= p <= 1. Its mass function is: 
p(x) = Γ(γ + x)/(x! Γ(γ))pγ(1 - p)x,        for x = 0, 1, 2,… 
where Γ is the gamma function. 
 
If γ is an integer, p(x) can be interpreted as the probability of 
having x failures before the γ-th success in a sequence of 

independent Bernoulli trials with probability of success p.  
 
(Simard) 

Gamma – number of failures until the 
                   experiment is stopped,  
                   Gamma > 0 
p – success probability in each  
       experiment, 0  p 1 

Normal The normal distribution. It has mean μ and variance σ2. Its density 
function is: 
f (x) = e-(x-μ)2/(2σ2)/((2π)1/2σ)   for - ∞ < x < ∞ , where σ > 0. 
 
When μ = 0 and σ = 1, we have the standard normal distribution, with 
corresponding distribution function: 
F(x) = Φ(x) = ∫-∞

xe-t2/2 dt/(2π)1/2        for - ∞ < x < ∞. 
 
(Simard) 

Mean – self-explanatory, any real  
               number 
Standard Deviation – self-explanatory, 
                                       Std. Dev. > 0 

Pareto The Pareto family, with shape parameter α > 0 and location 
parameter β > 0. The density for this type of Pareto distribution is: 
f (x) = αβα/xα+1   for x >= β, and 0 otherwise. 
 
The distribution function is: 
F(x) = 1 - (β/x)α        for x >= β, 
 
and the inverse distribution function is: 
F-1(u) = β(1 - u)-1/α        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – location parameter, beta > 0 

Poisson The Poisson distribution with mean λ >=  0. The mass function is: 
p(x) = e-λλx/(x!),        for x = 0, 1,... 
and the distribution function is: 
F(x) = e-λ∑j=0

x  λj/(j!),        for x = 0, 1,.... 
 
(Simard) 

Lambda – mean, lambda   0 

Student's T The Student-t distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = [Γ((n + 1)/2)/(Γ(n/2)(πn)1/2)][1 + x2/n]-(n+1)/2     for - ∞ < x < ∞, 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F – degrees of freedom (integer), 
               D.O.F > 0 

Triangular The triangular distribution with domain [a, b] and mode (or shape 
parameter) m, where a <= m <= b. The density function is: 

f (x) = 2(x - a)/[(b - a)(m - a)]          for a <= x <= m, 

f (x) = 2(b - x)/[(b - a)(b - m)]          for m <= x <= b, 

f (x) = 0          elsewhere, 

 
the distribution function is: 

F(x) = 0          for x < a, 

F(x) = (x - a)2/[(b - a)(m - a)]          if a <= x <= m, 

F(x) = 1 - (b - x)2/[(b - a)(b - m)]          if m <= x <= b, 

F(x) = 1          for x > b, 

 
and the inverse distribution function is given by: 

F-1(u) = a + ((b - a)(m - a)u)1/2          if 0 <= u <= (m - a)/(b - a), 

F-1(u) = b - ((b - a)(b - m)(1 - u))1/2          if (m - a)/(b - a) <= u <= 1 

 
(Simard) 

a – lower bound of the domain, any  
      real number 
b – upper bound of the domain, any  
       real number 
mode – shape parameter, any real  
               number 
 
“a   mode   b” must be satisfied 

Uniform The uniform distribution over the interval [a, b]. Its density is: 
f (x) = 1/(b - a)     for a <= x <= b, and 0 elsewhere. 
 
The distribution function is: 
F(x) = (x - a)/(b - a)         for a <= x <= b 
 
and its inverse is: 
F-1(u) = a + (b - a)u        for 0 <= u <= 1                             (Simard) 

Min. – lower bound 
Max. – upper bound 
             (Max. > Min.) 



Weibull The Weibull distribution with shape parameter α > 0, location 
parameter δ, and scale parameter λ > 0. The density function is: 
f (x) = αλα(x - δ)α-1e-(λ(x-δ))α        for x > δ. 
 
the distribution function is: 
F(x) = 1 - e-(λ(x-δ))α        for x > δ, 
 
and the inverse distribution function is: 
F-1(u) = (- ln(1 - u))1/α/λ + δ        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 
Delta – location parameter, any real  
              number 

ADDING VARIABLES 

In order to add a variable to a model, the user must left-click over the + button that can be found in the Main tab: 

 

The user will be asked to enter the new variable’s name: 

 

As long as there is no other previously declared variable with the same name as the one entered, the new variable 

will show up in the list of variables. Afterwards, the user must change the variable’s information in the Variable 

Info pane, depending on the type of distribution that is to be assigned to the variable: 

 

 

 

 

 



REMOVING VARIABLES 

Removing variables is straight-forward. The user just needs to select the variable that is to be removed from the 

simulation model in the Variables pane and then left-click over the – button: 

 

In the screenshot above, the variable y would disappear from the model after clicking the – button. 

GRAPHING A SINGLE VARIABLE 

In order to verify that the parameters of the variables coincide with what the user expects, 2R Soft provides the 

option to visualize the PDF (probability density function) and CDF (cumulative density function) curves associated 

with each variable before running a model. 

To view the behavior of a particular variable in graph form, the user must select such variable in the Variables 

pane and then left-click over the Graph button: 

 

 

 

A new window will pop-up with the PDF and CDF curves: 

 

 



NORMALIZED AND CUMULATIVE HISTOGRAMS 

Normalized and Cumulative histograms are found all throughout 2R Soft. These two types of graphs are of great 

importance, considering that they show the stochastic tendencies of a data set. With them, a goodness-of-fit table 

is displayed with various probability distributions and the best estimates for their parameters, along with different 

goodness-of-fit tests: 

 

The distribution selected in the goodness-of-fit table is juxtaposed with the histograms (red curve). Refer to the 

Probability Distribution Types section for more information on the various distribution types supported by 2R Soft. 

 

GOODNESS-OF-FIT (GOF) STATISTICS 

To decide whether to accept or reject a proposed probability distribution for the generated data, it is necessary to 

at least use one goodness-of-fit statistic as a criterion. 

Col. Test Type Explanation Critical Values 

A-D Anderson-
Darling 

The Anderson-Darling test is defined as: 

H0: The data follow a specified distribution. 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Anderson-Darling test statistic is defined 
as 

 
 
where 

 
F is the cumulative distribution function of 
the specified distribution. Note that the Yi are 
the ordered data. 

 
The test is a one-sided test and the 
hypothesis that the distribution is of a specific 
form is rejected if the test statistic, A, is 
greater than the critical value. 
 
(SEMATECH2) 

 

The critical values for the Anderson-Darling test are 
dependent on the specific distribution that is being 
tested.  (SEMATECH2) 
 
For  Normal and Lognormal distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.631 0.752 0.873 1.035 

 
For Weibull and Gumbel distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.637 0.757 0.877 1.038 

 
 
(Annis)  
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K-S Kolmogorov-
Smirnov 

The Kolmogorov-Smirnov test is defined by: 

H0: The data follow a specified distribution 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Kolmogorov-Smirnov test statistic is 
defined as 

 
where F is the theoretical cumulative 
distribution of the distribution being tested 
which must be a continuous distribution (i.e., 
no discrete distributions such as the binomial 
or Poisson), and it must be fully specified. 
 
(SEMATECH1) 

 

An attractive feature of this test is that the distribution 
of the K-S test statistic itself does not depend on the 
underlying cumulative distribution function being 
tested. Therefore, the critical values are universal. 
(SEMATECH1) 
 
For samples with more than 35 values: (ERI)  
 

Significance 0.20 0.15 0.10 0.05 0.01 

Critical Value     

√ 
 
    

√ 
 
    

√ 
 
    

√ 
 
    

√ 
 

 

K-S+ 
and 
K-S- 

Kolmogorov-
Smirnov+ 
and 
Kolmogorov-
Smirnov- 

Given a sample of n independent uniforms Ui over [0, 1], 
the Kolmogorov-Smirnov+ statistic Dn

+ and 
the Kolmogorov-Smirnov- statistic Dn

-, are defined by  

Dn
+ = max1 <= j <= n(j/n - U(j)),   

Dn
- = max1 <= j <= n(U(j) - (j - 1)/n),   

 
where the U(j) are the Ui sorted in increasing order. Both 
statistics follows the same distribution function, 
i.e. Fn(x) = P[Dn

+ <= x] = P[Dn
- <= x] 

 
(Simard) 

The same from the K-S test. 

CVM Cramér-von 
Mises 

Given a sample of n independent uniforms Ui over [0, 1], 
the Cramér-von Mises statistic Wn

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n(U(j) - (j-0.5)/n)2, 

where the U(j) are the Ui sorted in increasing order. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Wn

2 <= x] 
 
(Simard) 

As with the K-S test, the critical values are universal: 
  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.138 0.149 0.162 0.175 0.186 

10 0.125 0.142 0.167 0.212 0.32 
20 0.128 0.146 0.172 0.217 0.33 
30 0.128 0.146 0.172 0.218 0.33 
60 0.128 0.147 0.173 0.220 0.33 

100 0.129 0.147 0.173 0.220 0.34 

 
(ReliaSoftCorp) 

WG Watson G Given a sample of n independent uniforms Ui over [0, 1], 
the G statistic is defined by  

Gn = (n)1/2max1 <= j <= n[j/n - U(j) + bar(U)n -1/2]   

  = (n)1/2(Dn
+ + bar(U)n - 1/2),   

 
where the U(j) are the Ui sorted in increasing 
order, bar(U)n is the average of the observations Ui, 
and Dn

+ is the Kolmogorov-Smirnov+ statistic. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Gn <= x] 
 
(Simard) 

From 2R Soft WG CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.609 0.636 0.670 0.718 0.787 

10 0.692 0.728 0.773 0.843 0.979 
20 0.711 0.747 0.794 0.866 1.010 
30 0.719 0.755 0.802 0.875 1.021 
60 0.728 0.765 0.813 0.887 1.034 

100 0.734 0.770 0.818 0.893 1.041 
1000 0.745 0.782 0.831 0.906 1.055 

10000 0.749 0.786 0.834 0.909 1.059 

  

WU Watson U Given a sample of n independent uniforms ui over [0, 1], 
the Watson statistic Un

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n[u(j) - (j-0.5)/n]2,  

Un
2 = Wn

2 - n(bar(u)n -1/2)2. 
where the u(j) are the ui sorted in increasing order, 
and bar(u)n is the average of the observations ui. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) =P[Un

2 <= x] 
 
(Simard) 

From 2R Soft WU CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.122 0.132 0.143 0.154 0.164 

10 0.116 0.130 0.150 0.183 0.255 
20 0.116 0.131 0.151 0.185 0.262 
30 0.117 0.131 0.151 0.185 0.264 
60 0.117 0.131 0.151 0.186 0.266 

100 0.117 0.131 0.152 0.186 0.267 
1000 0.117 0.131 0.152 0.187 0.268 

10000 0.117 0.131 0.152 0.187 0.268 
 



INPUT DATA 

APPROACH 

 

 Abandon After First Failure: a simulation is considered to be complete when the system fails for the first 

time. 

 Successive Reconstruction: a simulation is only considered to be complete when the time window (t=time 

window) is reached. Therefore, if the system fails before the time window is reached, it is reconstructed in 

accordance with the “R After Reconstruction” settings. 

DETERIORATION MODELS 

 

A life cycle analysis model is correct if it fits in one of four cases: 

 Deterioration Function only. 

 Time Distribution Between Shocks only. 

 Shock Size Distribution with Time Distribution Between Shocks. 

 Deterioration Function with Time Distribution Between Shocks and Shock Size Distribution. 

You can activate/deactivate the different attributes of the model by checking/unchecking the boxes next to them. 

In the screenshot above, all attributes are disabled, since all of the boxes are unchecked. 

TIME DISTRIBUTION BETWEEN SHOCKS 

The time distribution between shocks is a random variable that defines the time lapse between one shock on the 

system and the next. Therefore, this input is necessary if shocks are to be taken into account throughout the life 

cycle analysis simulations. Refer to the Probability Distribution Types section for more information on the various 

distribution types supported by 2R LCA. 

 

 



SHOCK SIZE DISTRIBUTION 

The shock size distribution is a random variable that describes the amount of damage that the system receives 

during a shock. If the shock size distribution is disabled (left with the box unchecked), every shock leads to the 

failure of the system. Refer to the Probability Distribution Types section for more information on the various 

distribution types supported by 2R LCA. 

 

DETERIORATION FUNCTION 

The deterioration function is a monotonous, increasing, and continuous function of time. When declaring this 

function, the variable “t” must be used to represent time. Other random variables can be used in the deterioration 

function and should be declared in the “variables” list. An example of a deterioration function would be: 

 

Note that the variable “t” doesn’t have to be declared in the “variables” list. 

Refer to the Equation Editor section for information on supported functions and equation syntax in general. 

 

 

 

 

 

 



ANALYSIS OPTIONS 

LIMITS 

 

A life cycle analysis model can have two different resistance limits: 

 K_min: this limit indicates the resistance at which a system failure takes place. Hence, the system’s 

resistance is always greater or equal to K_min. 

 S_min: this limit indicates the resistance from which system maintenance is suggested. S_min must be 

greater or equal to K_min, and affects the maintenance behavior as detailed in the following section. 

RECONSTRUCT 

 

Reconstruction can be done under two profiles: 

 When R <= S_min: if this setting is activated, the system will be reconstructed whenever its resistance 

falls on or below S_min. Given that S_min is greater or equal to K_min, this behavior can lead to system 

reconstruction before failure. 

 When R = K_min: this setting only allows system reconstruction when system failure is reached. 

Therefore, the S_min value is completely ignored under this mode. 

The Repair Time (If R=K_min) is a random variable that represents the down time of the system if failure occurs. 

As such, it has a direct effect on the system’s availability. Refer to the Probability Distribution Types section for 

more information on the various distribution types supported by 2R LCA. In the image below, the repair time is 

shown between t=5 and t=7: 

 



SCALE OPTIONS 

 

System scale greatly impacts the entire LCA model and relates to the range of values for system resistance (R). 

This setting must be taken into account when declaring the Shock Size Distribution and the Deterioration 

Function. For example, shocks of size 100 may be reasonable in an absolute scale of 100%=1000, but make no 

sense in a normalized scale (100%=1). 

 Normalized: the normalized scale uses a range from 0.0 to 1.0 for system resistance (R). 

 Absolute: absolute scales can use an arbitrary range of resistance values. The “100%=” textbox receives 

the value at which the system’s resistance is considered to be 100% (R=100%). 

 

R AFTER RECONSTRUCTION 

The system’s resistance after being reconstructed shouldn’t necessarily be 100%. Some might argue that the 

reconstructed system should have a resistance lower than 100% when the system isn’t replaced with a new one, 

while others might argue that the reconstructed system should have a resistance greater than 100% because of 

advancements in technology and expertise as time passes by. 

‘GOOD AS NEW’  

 

This is the default setting. Under these conditions, the system is reconstructed to exactly R=100% every time it 

undergoes maintenance. 

 

 

 

 

 

 



COV-BASED RANDOM 

 

The COV-Based Random setting generates basic randomness in the value of system resistance (R) after 

maintenance. There are three important parameters under these conditions: 

 Distribution type: The resistance after maintenance may have three types of distributions: normal, 

lognormal, or uniform. Such distribution will have a mean of R=100% and a standard deviation of 

COV*mean. Refer to the Probability Distribution Types section for more information on the Normal, 

Lognormal, and Uniform distributions. 

 COV: the Coefficient of Variation is simply the standard deviation of the distribution divided by the mean. 

 R can be greater than 100%: when this checkbox is activated, resistance after maintenance can exceed 

the R=100% value. When left unchecked, reconstruction always generates values at or below 100%. 

RANDOM MU/SIGMA 

 

The Random Mu/Sigma option provides advanced settings to define the random behavior of system resistance 

after maintenance. The distribution’s mean and standard deviation can be a function of time under this scenario. 

 Distribution type: The resistance after maintenance may have three types of distributions: normal, 

lognormal, or uniform. Refer to the Probability Distribution Types section for more information on the 

Normal, Lognormal, and Uniform distributions. 

 Mean: The mean of the distribution can be a function of time. Here’s an example: 



 

Note that the variable “t” doesn’t have to be declared in the “variables” list. 

Refer to the Equation Editor section for information on supported functions and equation syntax in general. 

The equation above is appropriate for a normalized scale, considering that it tends towards R=1.0 when t=0. The 

graph of this function is shown below: 

 

Each colored line shows the function for a realization of the random variables involved (in this case, x is the only 

random variable present). The graph shows that the slope of the mean as a function of time is always the same, 

but the resistances themselves depend on the value of “x”. 

 Std. Dev.: the standard deviation of the distribution can also be declared to be a function of time, where 

the variable “t” doesn’t have to be declared in the variables list. Refer to the Equation Editor section for 

information on supported functions and equation syntax in general. 



MAINTENANCE POLICY 

When running a “successive reconstruction” model, a maintenance policy can be specified. 

NONE 

If no maintenance policy is in place, the system will be reconstructed if and only if its resistance, R, reaches a 

threshold value (S_min or K_min depending on the preferences set in the “Reconstruct” section). 

FIXED TIME 

 

Under a “fixed time” policy, the following set of rules is applied: 

 If the system fails before the “fixed time” has passed since the last reconstruction (or t=0), the system is 

reconstructed. 

 If the “fixed time” has passed since the last reconstruction (or t=0), the system is reconstructed regardless 

of its current resistance. 

RANDOM TIME 

 

Under a “random time” policy, the following set of rules is applied: 

 Maintenance times are randomly generated using an exponential distribution with the specified lambda. 

Refer to the Probability Distribution Types section for more information on the Exponential distribution. 

 If the system fails before the latest generated “random time” has passed since the last reconstruction (or 

t=0), the system is reconstructed. 

 If the latest generated “random time” has passed since the last reconstruction (or t=0), the system is 

reconstructed regardless of its current resistance. 

 



ADVANCED INPUT – COSTS AND BENEFIT 

Advanced input is enabled by selecting the “Calculate Costs” option in the “Advanced” menu located at the top of 

the main window: 

 

The equations that determine the initial and repair costs are as follows: 

 

Various input values are used to generate the cost function: 

 

 Base Cost: the base cost directly affects the initial cost of the system and, consequently, the repair (or 

maintenance) cost. 

 Punishment: the punishment cost is only taken into account when the system is reconstructed at 

R=K_min (system failure). It is a penalty to be paid for waiting until the system fails to take corrective 

action. 

 Tetha Factor and Gamma Factor: the tetha and gamma factors directly affect the initial cost of the system 

and, consequently, the repair (or maintenance) cost.  



 Repair Cost Factor: this factor is a percentage. It indicates the cost overhead associated with the 

reconstruction of a system that has reached failure (R=K_min). 

 Repair Cost Transition Model: this setting indicates the type of curve that is to be used to connect the 

cost of reconstruction at R=S_min with the cost of reconstruction at R=K_min (excluding the punishment). 

The cost of maintenance at R=S_min is calculated as: 

                   [      ]  
               

               
              

The equation shows that the cost of reconstruction at S_min is calculated as a portion of the initial cost assuming 

that the value of the system degrades in a linear way with a decrease in its resistance. 

 Discount Rate: the discount rate is the rate used to calculate the net present value of all of the cash flows 

occurring at t > 0. This is usually the investor’s discount rate or the WACC of the company. 

 Cost Projection Rate: the cost projection rate is the rate at which prices are expected to increase with 

time and is used to calculate the cost of the simulated reconstructions when t > 0. This can be viewed as 

the “expected inflation”. 

 Benefit Equation: the benefit equation is a function of the system’s resistance. It stands for the monetary 

benefit ($) that is attained in the lifetime of a system with initial resistance “R”. Refer to the Equation 

Editor section for information on supported functions and equation syntax in general. An example is 

shown below: 

 

Note that the system resistance, “R”, is used as part of the equation. 

The benefit (blue) is juxtaposed with the initial cost (red) to get a rough idea of their relative proportions. 

Nonetheless, the benefit function accounts for an entire lifetime, while the initial cost affects each and every 

reconstruction throughout the system’s lifetime. For this reason, the benefit is expected to be considerably larger 

than the initial cost for a positive net benefit to be generated. 



RESULTS 

A model can be run by selecting the “Run” option from the “Simulation” menu: 

 

The user will be prompted to enter the number of simulations to be carried out. After the simulations are 

completed, the “Results” tab shows a wide array of information: 

 

 MTTR or MTTF: MTTR stands for “Mean Time to Reconstruction” and MTTF stands for “Mean Time to 

Failure”. 

 MTTF: MTTF indicates the average time elapsed from reconstruction (or t=0) until system failure and is 

shown when the “Abandon After First Failure” approach is used or when reconstruction is limited to 

“R=K_min” in a “Successive Reconstruction” scenario. Reconstructions resulting from maintenance policy 

aren’t taken into account. 



 MTTR: MTTR indicates the average time between two consecutive system reconstructions and is shown 

when the “Successive Reconstruction” approach is used. Reconstructions resulting from maintenance 

policy aren’t taken into account. 

 <NPV>_costs: this statistic is only shown when “Calculate Costs” is activated in the “Advanced” menu. It 

indicates the average net present value of the costs associated with the system, including the acquisition 

cost and all of the reconstructions. 

 <Repair Cost>: this statistic is only shown when “Calculate Costs” is activated in the “Advanced” menu. 

It indicates the average cost for a system repair in current prices (without projecting the cost to t=0).  

 <# of Repairs>: this statistic indicates the average amount of reconstructions that the system receives in 

its lifetime. 

 <Availability>: availability is calculated as follows: 

             
                    

          
 

“Down Time” is calculated as the total repair time through a system lifecycle. Thus, availability depends 

on the Repair Time (If R=K_min) setting. 

 

SENSITIVITY ANALYSIS 

Sensitivity Analysis is used to investigate the influence that the value of either S_min or K_min has over the 

average net present value of the costs associated with the system (including acquisition cost and all of the 

reconstructions). This type of analysis is run by selecting the “Sensitivity Analysis” option from the “Simulation” 

menu: 

 

OPTIONS 

 

 # Sims per NPV: the number of simulations to be run in order to calculate the average NPV of the costs 

for a single value of K_min or S_min. 



 # NPVs: the number of values of K_min or S_min to test. 

 K_min: if K_min is selected, then K_min will be varying between 0 and S_min in regular intervals to 

calculate the different NPVs. 

 S_min: if S_min is selected, then S_min will be varying between K_min and R=100% in regular intervals to 

calculate the different NPVs. 

Clearly, the total amount of simulations that will be run is (# Sims per NPV)*(# NPVs). 

 

RESULTS 

A graph will show how the mean NPV of the costs varies in accordance with the value of K_min or S_min: 

 

 

 

 

 

 

 

 

 

 



COST OPTIMIZATION 

The Cost Optimization option can only be run on models with an absolute scale, as it analyzes the effect of 

maximum resistance, R=100%, on the net present value of the costs associated with the system (including 

acquisition cost and all of the reconstructions). 

 

 # Sims per NPV: the number of simulations to be run in order to calculate the average NPV of the costs 

for a single value of maximum resistance, R=100%. 

 # NPVs: the number of values of maximum resistance, R=100%, to test. 

 R_max: the highest value of maximum resistance, R=100%, to test. Maximum resistance, R=100%, will be 

varying between S_min and R_max in regular intervals to calculate the different NPVs. 

Clearly, the total amount of simulations that will be run is (# Sims per NPV)*(# NPVs). 

RESULTS 

A graph will show how the mean NPV of the costs varies in accordance with the value of maximum resistance, 

R=100%: 

 

 



PROFIT OPTIMIZATION 

The Profit Optimization option can only be run on models with an absolute scale, as it analyzes the effect of 

maximum resistance, R=100%, on the net benefit associated with the system (including acquisition cost and all of 

the reconstructions). Net benefit is calculated as follows: 

                    [         ]               

 

 # Sims per NPV: the number of simulations to be run in order to calculate the average net benefit for a 

single value of maximum resistance, R=100%. 

 # NPVs: the number of values of maximum resistance, R=100%, to test. 

 R_max: the highest value of maximum resistance, R=100%, to test. Maximum resistance, R=100%, will be 

varying between S_min and R_max in regular intervals to calculate the different net benefits. 

Clearly, the total amount of simulations that will be run is (# Sims per NPV)*(# NPVs). 

RESULTS 

A graph will show how the mean net benefit varies in accordance with the value of maximum resistance, R=100%: 
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