
 

FILE OPERATIONS 

2R Data is capable of reading and writing .2rd files, which contain the complete description of a specific data 

model: 

1. Series names. 

2. Series data values. 

These files are the means for 2R Data users to save their work, as well as the medium of distribution of data 

models that could be of interest to other 2R Data users. 

 

SAVING DATA MODELS 

At any given time, a user can decide to save a data model’s information for later use. In order to do this, the user 

must navigate through the File menu and select the Save or Save As… option: 

 

The difference between Save and Save As… is that, while Save will only ask for the file’s name and destination 

once and will then overwrite that same file on any subsequent uses, Save As… will ask for the file’s name and 

destination every time it is invoked. Thus, Save As… is to be used whenever a user wants to save modifications 

made to a file without modifying the base file. 

 

OPENING DATA MODELS 

In order to load the information contained inside a .2rd file, the user must navigate through the File menu and 

select the Open option: 

 

If no errors occur, the loaded model is shown in the Main tab (series names and data values). 



STARTING NEW DATA MODELS 

If a user is done working with a data model and wants to start a new one, the New option from the File menu 

provides this functionality: 

 

Before the new model is created, the user is given the chance to save his current work. 

 

SERIES MANAGEMENT 

ADDING A SERIES 

In order to add a series to a data model, a user must navigate through the Series menu and select the Add Series 

option: 

 

An input dialog will appear asking for the new series’ name. If the user enters a name that hasn’t yet been used in 

the current data model, the new series shows up in the Main tab ready for editing. 

 

REMOVING A SERIES 

If a data model contains a data series that is no longer needed, the user can request its elimination by navigation 

through the Series menu and selecting the Delete Series option: 

 

The user is then prompted to enter the name of the series to be deleted. If the input matches one of the current 

data model’s series, that series and its corresponding data values are eliminated from the Main tab. 

 

 

 

 



INPUTTING AND MODIFYING DATA 

2R Data offers a straight-forward editing interface in the Main tab. The following table summarizes the different 

actions that a user can carry out in 2R Data’s spreadsheet editor: 

Action How To 

Add values to a series 1. Select the series’ last cell (the one that is always blank). 
2. Write a value to be added. 
3. Hit the ENTER key. 
4. Repeat steps 2 and 3 until all the values have been added. 

Modify a specific value of a series There are two ways of going about this task: 

 Double-click over the cell that contains the value to be edited, make 
the desired changes, and then hit the ENTER key. 

 To overwrite a value, select the appropriate cell (single click) and 
write the new value. Then, hit the ENTER key. 

Delete a value from a series 1. Select the cell that contains the value to be deleted (single click). 
2. Hit the DEL or DELETE key. 

 

IMPORTING DATA FROM A FILE 

Given that, in real life, most data analysis is done based on files generated by specialized equipment and other 

types of external sources, 2R Data gives users the option to import data from a wide assortment of file formats. To 

initiate the data import module, navigate through the Edit menu and select the Import Data from file option: 

 

A dialog box appears asking for information regarding the external file’s format: 

 

An important thing to have in mind before importing data is that 2R Data assumes that the series are organized 

by columns in the external file. Thus, each column must represent a series of data and each row must contain at 

most one data value of a given series. 

The First row contains series name checkbox is to be checked if and only if you want the text from the first row to 

be taken as the name of the different series contained in the external file. 

Warning: if a series from the external file has the same name as one of the existing series in the current 2R Data 

model, all of the data values of the existing series are deleted and the ones from the external file take their place. 



When the First row contains series name checkbox is left unchecked, 2R Data will ask for the name to be assigned 

to the data of each of the columns in the external file. Warning: if a series from the external file is given the same 

name as one of the existing series in the current 2R Data model, all of the data values of the existing series are 

deleted and the ones from the external file take their place. 

Once the dialog options are correctly set, clicking the Start button will open a file selection dialog which the user 

should use to select the file to be imported. 

 

FILE TYPES 

The following table summarizes and exemplifies the different types of external files that 2R Data supports for data 

importing tasks. Note that 2R Data assumes “.” (dot) to be the decimal separator and DOES NOT support 

numbers with 1000 separator *usually “,” (comma)+. 

 

File Type Description and Examples 

Excel 2003 File (.xls) Files created with Microsoft Excel and saved with the XLS extension. It is a 
proprietary format. 
 
Examples: 

First row contains series names First row doesn’t contain series names 

 
 

 
 

Excel 2007 File (.xlsx) Same as the Excel 2003 file, but saved with the XLSX extension. It is an open 
XML-based format. 

Comma-Separated (CSV) Simple text-based format that uses the “,” (comma) character to separate values 
in one column from the values in the next column. 
 
Examples (same data as the examples in the Excel 2003 File description): 

First row contains series names First row doesn’t contain series names 

 
 

 
 



TAB-Delimited Simple text-based format that uses the TAB character to separate values in one 
column from the values in the next column. 
 
Examples (same data as the examples in the Excel 2003 File description): 

First row contains series names First row doesn’t contain series names 

 
 

 
 

Other Delimiter Simple text-based format that employs a user-defined character sequence to 
separate values in one column from the values in the next column. 
 
Examples using “&&” as the delimiter: 
(same data as the examples in the Excel 2003 File description): 

First row contains series names First row doesn’t contain series names 

 

 

 
 

 

PASTING DATA FROM EXCEL 

Given that Microsoft Excel is the de facto standard for spreadsheet management, 2R Data has been enhanced to 

allow an intuitive flow of information with that program. Therefore, users can copy and paste data from Excel into 

the 2R Data user interface with ease, both by using hotkeys and by using explicit menu options. 

METHOD 1 - HOTKEYS 

1. In Microsoft Excel, highlight the data values that you wish to paste into a 2R Data model: 

 

2. Then, press the CTRL and the C keys simultaneously (ctrl+c). 



3. Now, open 2R Data and start a new data model or open an existing one. In order to be able to paste the data 

into the program, you must already have some series in your current file. 

4. In 2R Data’s Main tab, select the cell that will act as the top-left cell of the imported data. Warning: the Excel 

data will overwrite data values of the current model if the position of the imported values coincides with the 

position of existing values. 

 

5. Press the CTRL and the V keys simultaneously (ctrl+v). 

6. The data is copied to 2R Data: 

 

Note that, as the warning from step 4 suggests, some values from the x and y series got overwritten by the Excel 

data. 

METHOD 2 – EXPLICIT MENU OPTIONS 

1. In Microsoft Excel, highlight the data values that you wish to paste into a 2R Data model: 

 



 

2. Right click over the selection and select the Copy option. 

 

3. Now, open 2R Data and start a new data model or open an existing one. In order to be able to paste the data 

into the program, you must already have some series in your current file. 

4. In 2R Data’s Main tab, select the cell that will act as the top-left cell of the imported data. Warning: the Excel 

data will overwrite data values of the current model if the position of the imported values coincides with the 

position of existing values. 

 

5. Navigate through the Edit menu and click over the Paste Excel Data option. 

 

6. The data is copied to 2R Data: 

 

Note that, as the warning from step 4 suggests, some values from the x and y series got overwritten by the Excel 

data. 



EXPORTING DATA 

Even though 2R Data provides a variety of ways to analyze one or more data series, some users might want to 

carry out operations on a data model’s information with other software packages. For that reason, 2R Data users 

are given the option to export a model’s series and their data values to XLSX (Excell 2007) format. The option to do 

this is located under the Export menu and is labeled as Export data to Excel. 

 

 

REPORT GENERATION 

2R Data is capable of exporting all the useful information that results from a data analysis to PDF format. To do 

this, a user must navigate through the Export menu and select the Generate Report option. This option will only 

be enabled if a successful analysis has been completed. 

 

The user is then prompted for the new report’s name and location before 2R Data creates the PDF file. 

 

BASICS 

GRAPHS 

All of the graphs generated in 2R Soft provide a wide array of options in the form of a context menu. The context 

menu appears when you right-click over a graph: 

 



PROPERTIES PANE 

If you select the Properties… option, a properties pane appears. The properties pane lets you change the graph 

title, axis names, axis ranges, and font size. 

 

 

COPY AND SAVE AS…  

If you select COPY, the graph is copied to the system clipboard, so you can PASTE it anywhere else (Microsoft 

Word, Microsoft PowerPoint, etc). 

Meanwhile, if Save As… is selected, 2R Soft will save the graph as a PNG image file in your hard disk after selecting 

the desired output folder and file name: 

 



PRINT 

The Print option does just that: it sends the graph to the printer of your choice (local or networked): 

 

SCALE OPTIONS 

The Auto Range, Zoom In, and Zoom Out options are a quick way to inspect the graph. If a very specific range is 

needed for an axis, we highly recommend the Properties Pane. 

MANUAL ZOOM IN 

For user convenience, all 2R Soft graphs support manual zoom in by regions. If you’re interested in a specific 

region, hold your left-click and drag the mouse to generate a highlighted box around that region: 

 

The end result: 

 



NORMALIZED AND CUMULATIVE HISTOGRAMS 

Normalized and Cumulative histograms are found all throughout 2R Soft. These two types of graphs are of great 

importance, considering that they show the stochastic tendencies of a data set. With them, a goodness-of-fit table 

is displayed with various probability distributions and the best estimates for their parameters, along with different 

goodness-of-fit tests: 

 

The distribution selected in the goodness-of-fit table is juxtaposed with the histograms (red curve). 

PROBABILITY DISTRIBUTION TYPES 

When declaring a variable with a known distribution, the user can select one of many types of probability 

distributions. 

Distribution Description Parameters 

Beta The beta distribution has shape parameters α > 0 and β > 0 over the 
interval (a, b), where a < b. 
 
It has density: 
f (x) = (x - a)α-1(b - x)β-1/[B(α, β)(b - a)α+β-1] 
for a < x < b, and 0 elsewhere. 
 
It has the following distribution function: 
F(x) = Iα, β(x) = ∫a

x(ξ - a)α-1(b - ξ)β-1/[B(α, β)(b - a)α+β-1]dξ,  for a < x < b 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – shape parameter, beta > 0 
a – lower bound of the interval 
b – upper bound of the interval, b > a 

Binomial The binomial distribution with parameters n and p, where n is a 
positive integer and 0 <= p <= 1. Its mass function is given by: 
p(x) = nCr(n, x)px(1 - p)n-x = n!/[x!(n - x)!]  px(1 - p)n-x  for x = 0, 1, 2,…n, 
 
and its distribution function is: 
F(x) = ∑j=0

xnCr(n, j)  pj(1 - p)n-j        for x = 0, 1, 2,…n, 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

p – probability of success on each trial 
       (0  p 1) 
n – number of trials (integer),  n > 0 

Chi Square The chi-square distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = x(n/2)-1e-x/2/(2n/2Γ(n/2)),         for x > 0 
where Γ(x) is the gamma function. The chi-square distribution is a 
special case of the gamma distribution with shape parameter n/2 and 
scale parameter1/2. 
(Simard) 

n – degrees of freedom (integer), n>0 



Deterministic Distribution that represents a constant value, val. Consequently: 

 ( )  {
          
          

    ( )  {
          
          

 

Value – any real number 

Discrete Uniform The discrete uniform distribution over the integers in the range [i, j]. Its 
mass function is given by: 
p(x) = 1/(j - i + 1)         for x = i, i + 1,…, j 
and 0 elsewhere. 
 
The distribution function is: 
F(x) = (floor(x) - i + 1)/(j - i + 1)         for i <= x <= j 
and its inverse is: 
F-1(u) = i + (j - i + 1)u        for 0 <= u <= 1. 
 
(Simard) 

Min. – lower bound (integer) 
Max. – upper bound (integer) 
             (Max. > Min.) 

Exponential The exponential distribution with mean 1/λ where λ > 0. Its density is: 
f (x) = λe-λx        for x >= 0, 
its distribution function is: 
F(x) = 1 - e-λx,        for x >= 0, 
and its inverse distribution function is: 
F-1(u) = - ln(1 - u)/λ,        for 0 < u < 1 
 
(Simard) 

Lambda – rate parameter, lambda > 0 

F-Distribution The Fisher F distribution with n and m degrees of freedom, 
where n and m are positive integers. Its density is: 
f (x) = Γ((n + m)/2)nn/2mm/2/[Γ(n/2)Γ(m/2)]x(n-2)/2/(m + nx)(n+m)/2, for x > 0. 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F. 1 – the n degrees of freedom                                                                                
                  (integer), D.O.F. 1 > 0 
D.O.F. 2 – the m degrees of freedom                                                                                
                  (integer), D.O.F. 2 > 0 

Gamma The gamma distribution with shape parameter α > 0 and scale 
parameter λ > 0. The density is: 
f (x) = λαxα-1e-λx/Γ(α),        for x > 0, 
where Γ is the gamma function, defined by: 
Γ(α) = ∫0

∞xα-1e-xdx. 
 
In particular, Γ(n) = (n - 1)! when n is a positive integer. 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 

Geometric The geometric distribution with parameter p, where 0 < p < 1. Its mass 
function is: 
p(x) = p (1 - p)x,        for x = 0, 1, 2,… 
The distribution function is given by: 
F(x) = 1 - (1 - p)x+1,        for x = 0, 1, 2,… 
and its inverse is: 
F-1(u) = floor(ln(1 - u)/ln(1 - p)),        for 0 <= u < 1 
 
(Simard) 

p – probability of success on each trial   
       (0 < p < 1) 

Gumbel The Gumbel distribution, with location parameter δ and scale 
parameter β≠ 0. Using the notation z = (x - δ)/β, it has density: 
f (x) = e-ze-e-z/| β|,        for - ∞ < x < ∞. 
and distribution function: 
F(x) = e-e-z,        for β > 0 
F(x) = 1 - e-e-z,        for β < 0 
 
(Simard) 

Beta – scale parameter, beta   0 
Delta – location parameter, any real  
              number 

Hypergeometric The hypergeometric distribution with k elements chosen 
among l, m being of one type, and l - m of the other. The 
parameters m, k and l are positive integers 
where 1 <= m <= l and 1 <= k <= l. Its mass function is given by: 
 
p(x) = nCr(m, x)nCr(l - m, k - x)/nCr(l, k) 
for max(0, k - l + m) <= x <= min(k, m) 
where nCr(n, x) is the number of possible combinations of x elements 
chosen among a set of n elements. 
 
(Simard) 

m – number of elements of one type  
        (integer),   m > 0 
l – total elements (integer), l > 0 
k – number of elements chosen  
      among l (integer), k > 0 



Logistic The logistic distribution. It has location parameter α and scale 
parameter λ > 0. The density is: 
f (x) = (λe-λ(x-α))/((1 + e-λ(x-α))2)                for - ∞ < x < ∞. 
and the distribution function is: 
F(x) = 1/[1 + e-λ(x-α)]                for - ∞ < x < ∞. 
 
For λ = 1 and α = 0, one can write: 
F(x) = (1+tanh(x/2))/2. 
 
The inverse distribution function is given by: 
F-1(u) = ln(u/(1 - u))/λ + α        for 0 <= u < 1 
 
(Simard) 

Alpha – location parameter, any real  
               number 
Lambda – scale parameter, lambda>0 

Lognormal The lognormal distribution. It has scale parameter μ and shape 
parameter σ > 0. The density is: 
f (x) = ((2π)1/2σx)-1e-(ln(x)-μ)2/(2σ2)    for x > 0, and 0 elsewhere. 
 
The distribution function is: 
F(x) = Φ((ln(x)-μ)/σ)        for x > 0, 
where Φ is the standard normal distribution function. 
 
Its inverse is given by: 
F-1(u) = eμ+σΦ-1(u)        for 0 <= u < 1 
 
If ln(Y) has a normal distribution, then Y has a lognormal distribution 
with the same parameters. 
 
(Simard) 

log mu – scale parameter, any real 
                 number 
log sigma – shape parameter, 
                     log sigma > 0 

Negative Binomial The negative binomial distribution with real parameters γ and p, 
where γ > 0 and 0 <= p <= 1. Its mass function is: 
p(x) = Γ(γ + x)/(x! Γ(γ))pγ(1 - p)x,        for x = 0, 1, 2,… 
where Γ is the gamma function. 
 
If γ is an integer, p(x) can be interpreted as the probability of 
having x failures before the γ-th success in a sequence of independent 

Bernoulli trials with probability of success p.  
 
(Simard) 

Gamma – number of failures until the 
                   experiment is stopped,  
                   Gamma > 0 
p – success probability in each  
       experiment, 0  p 1 

Normal The normal distribution. It has mean μ and variance σ2. Its density 
function is: 
f (x) = e-(x-μ)2/(2σ2)/((2π)1/2σ)   for - ∞ < x < ∞ , where σ > 0. 
 
When μ = 0 and σ = 1, we have the standard normal distribution, with 
corresponding distribution function: 
F(x) = Φ(x) = ∫-∞

xe-t2/2 dt/(2π)1/2        for - ∞ < x < ∞. 
 
(Simard) 

Mean – self-explanatory, any real  
               number 
Standard Deviation – self-explanatory, 
                                       Std. Dev. > 0 

Pareto The Pareto family, with shape parameter α > 0 and location 
parameter β > 0. The density for this type of Pareto distribution is: 
f (x) = αβα/xα+1   for x >= β, and 0 otherwise. 
 
The distribution function is: 
F(x) = 1 - (β/x)α        for x >= β, 
 
and the inverse distribution function is: 
F-1(u) = β(1 - u)-1/α        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Beta – location parameter, beta > 0 

Poisson The Poisson distribution with mean λ >=  0. The mass function is: 
p(x) = e-λλx/(x!),        for x = 0, 1,... 
and the distribution function is: 
F(x) = e-λ∑j=0

x  λj/(j!),        for x = 0, 1,.... 
 
(Simard) 

Lambda – mean, lambda   0 

Student's T The Student-t distribution with n degrees of freedom, where n is a 
positive integer. Its density is: 
f (x) = [Γ((n + 1)/2)/(Γ(n/2)(πn)1/2)][1 + x2/n]-(n+1)/2     for - ∞ < x < ∞, 
where Γ(x) is the gamma function 
 
(Simard) 

D.O.F – degrees of freedom (integer), 
               D.O.F > 0 



Triangular The triangular distribution with domain [a, b] and mode (or shape 
parameter) m, where a <= m <= b. The density function is: 

f (x) = 2(x - a)/[(b - a)(m - a)]          for a <= x <= m, 

f (x) = 2(b - x)/[(b - a)(b - m)]          for m <= x <= b, 

f (x) = 0          elsewhere, 

 
the distribution function is: 

F(x) = 0          for x < a, 

F(x) = (x - a)2/[(b - a)(m - a)]          if a <= x <= m, 

F(x) = 1 - (b - x)2/[(b - a)(b - m)]          if m <= x <= b, 

F(x) = 1          for x > b, 

 
and the inverse distribution function is given by: 

F-1(u) = a + ((b - a)(m - a)u)1/2          if 0 <= u <= (m - a)/(b - a), 

F-1(u) = b - ((b - a)(b - m)(1 - u))1/2          if (m - a)/(b - a) <= u <= 1 

 
(Simard) 

a – lower bound of the domain, any  
      real number 
b – upper bound of the domain, any  
       real number 
mode – shape parameter, any real  
               number 
 
“a   mode   b” must be satisfied 

Uniform The uniform distribution over the interval [a, b]. Its density is: 
f (x) = 1/(b - a)     for a <= x <= b, and 0 elsewhere. 
 
The distribution function is: 
F(x) = (x - a)/(b - a)         for a <= x <= b 
 
and its inverse is: 
F-1(u) = a + (b - a)u        for 0 <= u <= 1 
 
(Simard) 

Min. – lower bound 
Max. – upper bound 
             (Max. > Min.) 

Weibull The Weibull distribution with shape parameter α > 0, location 
parameter δ, and scale parameter λ > 0. The density function is: 
f (x) = αλα(x - δ)α-1e-(λ(x-δ))α        for x > δ. 
 
the distribution function is: 
F(x) = 1 - e-(λ(x-δ))α        for x > δ, 
 
and the inverse distribution function is: 
F-1(u) = (- ln(1 - u))1/α/λ + δ        for 0 <= u < 1 
 
(Simard) 

Alpha – shape parameter, alpha > 0 
Lambda – scale parameter, lambda>0 
Delta – location parameter, any real  
              number 

 

 

 

 

 

 

 

 

 

 

 



GOODNESS-OF-FIT (GOF) STATISTICS 

To decide whether to accept or reject a proposed probability distribution for the generated data, it is necessary to 

at least use one goodness-of-fit statistic as a criterion. 

Col. Test Type Explanation Critical Values 

A-D Anderson-
Darling 

The Anderson-Darling test is defined as: 

H0: The data follow a specified distribution. 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Anderson-Darling test statistic is defined 
as 

 
 
where 

 
F is the cumulative distribution function of 
the specified distribution. Note that the Yi are 
the ordered data. 
 
The test is a one-sided test and the 
hypothesis that the distribution is of a specific 
form is rejected if the test statistic, A, is 
greater than the critical value. 
 
(SEMATECH2) 

 

The critical values for the Anderson-Darling test are 
dependent on the specific distribution that is being 
tested.  (SEMATECH2) 
 
For  Normal and Lognormal distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.631 0.752 0.873 1.035 

 
For Weibull and Gumbel distributions: 
 

alpha 0.1 0.05 0.025 0.01 

A2crit 0.637 0.757 0.877 1.038 

 
 
(Annis)  

K-S Kolmogorov-
Smirnov 

The Kolmogorov-Smirnov test is defined by: 

H0: The data follow a specified distribution 

Ha: The data do not follow the specified 
distribution 

Test 
Statistic: 

The Kolmogorov-Smirnov test statistic is 
defined as 

 
where F is the theoretical cumulative 
distribution of the distribution being tested 
which must be a continuous distribution (i.e., 
no discrete distributions such as the binomial 
or Poisson), and it must be fully specified. 
 
(SEMATECH1) 

 

An attractive feature of this test is that the distribution of 
the K-S test statistic itself does not depend on the 
underlying cumulative distribution function being tested. 
Therefore, the critical values are universal. (SEMATECH1) 
 
For samples with more than 35 values: (ERI)  
 

Significance 0.20 0.15 0.10 0.05 0.01 

Critical Value     

√ 
 

    

√ 
 

    

√ 
 

    

√ 
 

    

√ 
 

 

K-S+ 
and 
K-S- 

Kolmogorov-
Smirnov+ 
and 
Kolmogorov-
Smirnov- 

Given a sample of n independent uniforms Ui over [0, 1], 
the Kolmogorov-Smirnov+ statistic Dn

+ and 
the Kolmogorov-Smirnov- statistic Dn

-, are defined by  

Dn
+ = max1 <= j <= n(j/n - U(j)),   

Dn
- = max1 <= j <= n(U(j) - (j - 1)/n),   

 
where the U(j) are the Ui sorted in increasing order. Both 
statistics follows the same distribution function, 
i.e. Fn(x) = P[Dn

+ <= x] = P[Dn
- <= x] 

 
(Simard) 

The same from the K-S test. 

CVM Cramér-von 
Mises 

Given a sample of n independent uniforms Ui over [0, 1], 
the Cramér-von Mises statistic Wn

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n(U(j) - (j-0.5)/n)2, 

where the U(j) are the Ui sorted in increasing order. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Wn

2 <= x] 
 
(Simard) 

As with the K-S test, the critical values are universal: 
  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.138 0.149 0.162 0.175 0.186 

10 0.125 0.142 0.167 0.212 0.32 
20 0.128 0.146 0.172 0.217 0.33 
30 0.128 0.146 0.172 0.218 0.33 
60 0.128 0.147 0.173 0.220 0.33 

100 0.129 0.147 0.173 0.220 0.34 

 
(ReliaSoftCorp) 



WG Watson G Given a sample of n independent uniforms Ui over [0, 1], 
the G statistic is defined by  

Gn = (n)1/2max1 <= j <= n[j/n - U(j) + bar(U)n -1/2]   

  = (n)1/2(Dn
+ + bar(U)n - 1/2),   

 
where the U(j) are the Ui sorted in increasing 
order, bar(U)n is the average of the observations Ui, 
and Dn

+ is the Kolmogorov-Smirnov+ statistic. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) = P[Gn <= x] 
 
(Simard) 

From 2R Soft WG CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.609 0.636 0.670 0.718 0.787 

10 0.692 0.728 0.773 0.843 0.979 
20 0.711 0.747 0.794 0.866 1.010 
30 0.719 0.755 0.802 0.875 1.021 
60 0.728 0.765 0.813 0.887 1.034 

100 0.734 0.770 0.818 0.893 1.041 
1000 0.745 0.782 0.831 0.906 1.055 

10000 0.749 0.786 0.834 0.909 1.059 

  

WU Watson U Given a sample of n independent uniforms ui over [0, 1], 
the Watson statistic Un

2 is defined by 
Wn

2 = 1/12n + ∑j=1
n[u(j) - (j-0.5)/n]2,  

Un
2 = Wn

2 - n(bar(u)n -1/2)2. 
where the u(j) are the ui sorted in increasing order, 
and bar(u)n is the average of the observations ui. The 
distribution function (the cumulative probabilities) is 
defined as Fn(x) =P[Un

2 <= x] 
 
(Simard) 

From 2R Soft WU CDF code: 
 

  Significance 

N 0.20 0.15 0.10 0.05 0.01 
2 0.122 0.132 0.143 0.154 0.164 

10 0.116 0.130 0.150 0.183 0.255 
20 0.116 0.131 0.151 0.185 0.262 
30 0.117 0.131 0.151 0.185 0.264 
60 0.117 0.131 0.151 0.186 0.266 

100 0.117 0.131 0.152 0.186 0.267 
1000 0.117 0.131 0.152 0.187 0.268 

10000 0.117 0.131 0.152 0.187 0.268 
 

STATISTICS 

When appropriate, 2R Soft calculates an array of statistics that can be both relevant and pertinent for users 

interested in analyzing the behavior of a data set. 

 

The screenshot above is an example of what the user should expect to find in a Statistics tab. The following 

subsections of this document explain each of the statistics that are calculated by 2R Soft.  

MEAN 

The arithmetic mean of a set of values is the quantity commonly called "the" mean or the average. Given a set of 
samples *  +, the arithmetic mean is: (Weisstein2) 

 ̅  
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VARIANCE 

For a series of data, the sample variance may be computed as: (Weisstein3) 
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where  ̅ is the sample mean. 
 
Note that the sample variance   

  defined above is not an unbiased estimator for the population variance,   . In 
order to obtain an unbiased estimator for   , it is necessary to instead define a "bias-corrected sample variance": 
(Weisstein3) 

    
  

 

   
∑(    ̅) 

 

   

 

2R Soft uses the bias-corrected sample variance. 

From the mathematical definition of variance, it is clear that this statistic expresses the dispersion of the data with 

respect to the mean. The larger the variance, the more spread out is the data. 

 

STANDARD DEVIATION 

The standard deviation formula is very simple: it is the square root of the variance. It is the most commonly used 

measure of spread (Lane2). Hence, an unbiased estimator of the population standard deviation,  , is given by: 
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KURTOSIS 

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets 

with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data 

sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would 

be the extreme case. For univariate data Y1, Y2, ..., YN, the formula for kurtosis is: (SEMATECH3) 

         
∑ (    ̅)  

   

(   )  
 

where  ̅ is the mean,   is the standard deviation, and N is the number of data points. 

 

 

 

 



 

SKEWNESS 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is 

symmetric if it looks the same to the left and right of the center point. For univariate data Y1, Y2, ..., YN, the formula 

for skewness is: (SEMATECH3) 

         
∑ (    ̅)  

   

(   )  
 

where  ̅ is the mean,   is the standard deviation, and N is the number of data points. The skewness for a normal 

distribution is zero, and any symmetric data should have a skewness near zero. Negative values for the skewness 

indicate data that are skewed left and positive values for the skewness indicate data that are skewed right. By 

skewed left, we mean that the left tail is long relative to the right tail. Similarly, skewed right means that the right 

tail is long relative to the left tail. Some measurements have a lower bound and are skewed right. For example, in 

reliability studies, failure times cannot be negative. (SEMATECH3) 

QUARTILES (Q1, MEDIAN, Q3) 

The quartiles of a data set are formed by the two boundaries on either side of the median, which divide the set 

into four equal sections. The lowest 25% of the data being found below the first quartile value, also called the 

lower quartile (Q1). The median, or second quartile divides the set into two equal sections. The lowest 75% of the 

data set should be found below the third quartile, also called the upper quartile (Q3). These three numbers are 

measures of the dispersion of the data, while the mean, median and mode are measures of central tendency. 

(EncyclopediaOfStatistics) 

 

BOX-WHISKER DIAGRAM 

Given some data, a box and whisker diagram (or box plot) can be drawn to show the spread of the data. The 

diagram shows the quartiles of the data, using these as an indication of the spread. (MathsRevision.net) 

The diagram is made up of a "box", which lies between the upper and lower quartiles. The median can also be 

indicated by dividing the box into two. (MathsRevision.net) 

The "whiskers" are straight line extending from the ends of the box to the maximum and minimum values: 

(MathsRevision.net) 

 

In 2R Soft, the Box-Whisker diagram also contains a black dot, which marks the arithmetic mean of the generated 

values. 

 



ANOVA 

Variance Analysis, also known as ANOVA, generally makes reference to a set of experimental situations and 

statistical procedures for the analysis of quantitative answers of experimental units. The simplest problem tackled 

by way of ANOVA is known as One-Way ANOVA, where the input data comes from sampling more than two 

different populations and a single factor characterizes those populations (usually the mean). Meanwhile, Two-Way 

ANOVA is employed when two factors of interest are in play and, as expected, it translates into a more complex 

analysis. (Devore 1999) 

 

ONE-WAY ANOVA 

INTRODUCTION 

Note: This section is based on (Devore 1999). Refer to that text for a more in-depth treatment of the topic. 

NULL AND ALTERNATIVE HYPOTHESES 

One-way ANOVA focuses on the comparison of two or more population means. Let: 

                                       

                        

Then: 

                               

                                                                

 

If I=4, the null hypothesis is true if the four    are identical.    would be true if, for example,            , if 

           , if the four    differ from each other, etc. 

NOTATION 

From this point on, we will be using the following notation: 

Xij = the random variable representing the j-th measurement taken from the i-th population. 

xij = the observed value of Xi,j when the experiment is carried out. 

Ji = the sample size of the i-th population 

n = ∑     = total number of observations in the ANOVA model 

 

Individual sample means will be represented by  ̅  ,  ̅  , … ,  ̅   . Thus: 

 ̅   
∑    

 
   

  
 

In a similar way, the mean of all of the observations, called grand mean, is: 

 ̅   
∑ ∑    

 
   

 
   

 
 



ASSUMPTIONS 

Let us assume that the I populations are normally distributed with the same variance,   . That is, each Xij is 

normally distributed with: 

 (   )                  (   )     

The standard deviations of the I samples (s1, s2, …, sI) will generally differ a bit even when the corresponding   are 

identical. In terms of sample standard deviations, s, a practical rule is: if the largest s isn’t much larger than twice 

the value of the smallest, it’s reasonable to suppose equal   . 

TEST STATISTIC 

If the null hypothesis is true, the Ji observations of every sample come from a normally distributed population with 

the same mean  , in which case the sample means  ̅           ̅   must be reasonably close to each other. The 

testing procedure is based on the comparison of a measure of differences between the   ̅   with a measure of 

variation calculated within each one of the samples. 

Let: 
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Then, the mean square of treatments is given by: 

     
    

   
 

And the mean square of error is: 

    
   

   
 

 

The test statistic for one-way ANOVA is: 

 

  
    

   
 

 

THE F TEST 

When    is true: 

 (    )   (   )     

Meanwhile, when    is false: 

 (    )   (   )     

That is, both statistics are unbiased for estimating the common population variance    when    is true, but MSTr 

tends to overestimate    when    is false. 



When    is true and the basic ANOVA assumptions are satisfied, the F statistic has an F distribution with 

       and       . If the calculated value of F is represented by f, the rejection region              

specifies an F-test with significance level of  . 

TUKEY PROCEDURE 

When the calculated value of F, f, in a one-way ANOVA is outside the rejection region, the analysis ends because 

no significant differences have been detected between the   . On the other hand, when    is rejected, further 

analysis can be made. Under such condition, it is useful to know which of the    are dissimilar with one another. 

The Tukey procedure provides the means to draw that sort of conclusions. 

Let: 

             √
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) 

Where          is the critical upper tail value of the studentized distribution with I degrees of freedom in the 

numerator and n-I degrees of freedom in the denominator, with significance level of  . 

Then,     is approximately the probability that: 

 ̅    ̅              ̅    ̅                        

Any pair of sample means ( ̅     ̅  ) with a distance greater than     between them is  -significantly different. 

INPUT 

In order to run a One-Way ANOVA analysis, the user must navigate through the Analysis menu and select the One-

Way ANOVA option from the ANOVA submenu: 

 

The user then needs to select the data series that will be treated as samples in the ANOVA analysis: 

 

 The series (or samples) are expected to be associated with separate populations or different treatments 

of the same population. 

 The Alpha (%) parameter is the significance level,  , to be used for both the F test and the Tukey 

procedure (when appropriate). 



OUTPUT 

ANOVA TABLES 

An ANOVA table is always the main result of an ANOVA analysis. A standard ANOVA table is summarized below: 

Variation Source 
Degrees of 
Freedom 

Sum of Squares Mean Square f 
F_max 

(rejection region limit) 

Model (Samples) I-1 SSTr MSTr MSTr  / MSE            

Error n-I SSE MSE   

Total n-1 SST    

Refer to the One-Way ANOVA Introduction section for information regarding the contents of the table. 

WHEN NULL HYPOTHESIS CANNOT BE REJECTED 

When the calculated value of F, f, in a one-way ANOVA is outside the rejection region, the analysis ends because 

no significant differences have been detected between the   . In this case, an ANOVA table is shown and nothing 

else: 

 

WHEN NULL HYPOTHESIS IS REJECTED 

When the calculated value of F, f, in a one-way ANOVA falls inside the rejection region, the Tukey procedure is also 

performed: 

 



The Grouping and Series columns contain the most useful information from the first table. If two series have a 

Grouping letter in common, they are NOT significantly different with significance level  . In the example above, 

series 2 and 3 aren’t significantly different, since they both contain the letter A in their Grouping. Meanwhile, 

series 1 is significantly different from every other series, given that the grouping letter C doesn’t appear anywhere 

else. 

In the second table, conclusions regarding each pair of samples are explicitly shown. If the Sig. Dif.? column 

indicates YES for a pair, the two samples are significantly different with significance level  ; if it indicates NO, the 

pair of samples isn’t significantly different with significance level  . While the Dif. column shows the distance 

between the sample means, | ̅     ̅  |, the Min. Sig. Dif. shows the Tukey minimum distance,    , for the two 

series to be considered significantly different with significance level  . Refer to the Tukey Procedure section for 

more information on the meaning of these results. 

TWO-WAY ANOVA 

INTRODUCTION 

Note: This section is based on (Devore 1999). Refer to that text for a more in-depth treatment of the topic. 

One-Way ANOVA is used to test for similarity of population means. Nonetheless, many experiments deal with two 

or more factors of interest. In Two-Way ANOVA, conclusions can be drawn regarding two factors, A and B. We use I 

to represent the number of levels of factor A and J to represent the number of levels of factor B, for a total of IJ 

possible combinations. 

Due to the fact that 2R Soft aims for simplicity, the only type of Two-Way ANOVA analysis that can be 

performed with this software suite is with datasets where Kij=1, being Kij the number of measurements made for 

every combination (i,j) of factors A and B. 

NOTATION 

From this point on, we will be using the following notation: 

Xij = the random variable representing the measurement when factor A is at level “i” and factor B is at level “j”. 

xij = the observed value of Xi,j when the experiment is carried out. 

I = number of levels of factor A. 

J = number of levels of factor B. 
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The mean of all of the observations, called grand mean, is: 

 ̅   
∑ ∑    

 
   

 
   

  
 



THE MODEL 

Suppose the existence of I parameters            and J parameters            such that: 

                  (                      ) 

      ∑   

 

   

   ∑   

 

   

    

                                                                                                      

In the model,     is the random quantity by which the measurement,    , differs from its predicted value (reality vs 

model). 

There are two hypotheses of interest in a Two-Way ANOVA: 

                  

                             

 

                  

                             

 

The first hypothesis,    , states that the various levels of factor A have no effect over the real average measure; 

the second hypothesis,    , rules out any effect from factor B. 

TEST PROCEDURE 

The test procedure here is very similar to the F Test carried out in a One-Way ANOVA. In Two-Way ANOVA, the 

total variation is divided into the unexplained variability (or error), SSE, and into other two parts, SSA and SSB, that 

can be explained by the possible falseness of the two null hypothesis,     and     respectively. 

The calculations involved are: 
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F TEST 

The resulting F test is: 

Hypothesis Test Statistic Rejection Region 
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          (   )(   ) 

When     is true and the basic ANOVA assumptions are satisfied, the FA statistic has an F distribution with 

       and    (   )(   ). If the calculated value of FA is represented by fA, the rejection region  

          (   )(   ) specifies an F-test with significance level of  . 

When     is true and the basic ANOVA assumptions are satisfied, the FB statistic has an F distribution with 

       and    (   )(   ). If the calculated value of FB is represented by fB, the rejection region  

          (   )(   ) specifies an F-test with significance level of  . 

 

TUKEY PROCEDURE 

When     or     are rejected, further analysis can be made. Under such condition, it is useful to detect important 

differences between the levels of factor A or B in the samples. The Tukey procedure provides the means to draw 

that sort of conclusions.  

Let: 
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Where        is the critical upper tail value of the studentized distribution with x degrees of freedom in the 

numerator and y degrees of freedom in the denominator, with significance level of  . 

Then,     is approximately the probability that: 

                 ̅    ̅              ̅    ̅                      

                 ̅    ̅              ̅    ̅                      

Any pair of sample means with a distance greater than   between them is  -significantly different in terms of 

the factor being studied (A or B). 

 

 

 

 

 



INPUT 

In order to run a One-Way ANOVA analysis, the user must navigate through the Analysis menu and select the Two-

Way ANOVA option from the ANOVA submenu: 

 

This action opens a new graphical interface, which receives the sample data in a matrix that makes a 1-to-1 

mapping between levels of factor A and levels of factor B: 

 

 The Alpha (%) parameter is the significance level,  , to be used for both the F tests and the Tukey 

procedures (when appropriate). 

Two-Way ANOVA analysis uses a unique file format (.2ra) to save the data disjointedly from the one found in 2R 

Data’s Main tab. For this reason, the Two-Way ANOVA window contains a separate File menu. Jump to the 

Saving and Loading section for further information. 

 

DATA EDITING FUNCTIONS 

The following table summarizes the data input and modification procedures that are supported by the input 

matrix: 

Action How To 

Add factor levels to the matrix 5. To add a new factor A level to the matrix, select the last cell in the 
B1 column (the one that is always blank). To add a new Factor B 
level to the matrix, select the last cell in the A1 row (the one that is 
always blank). 

6. Write a value to be added. 
7. Hit the ENTER key. 

Modify a specific value of the 
matrix 

There are two ways of going about this task: 

 Double-click over the cell that contains the value to be edited, make 
the desired changes, and then hit the ENTER key. 

 To overwrite a value, select the appropriate cell (single click) and 
write the new value. Then, hit the ENTER key. 



SAVING AND LOADING TWO-WAY ANOVA DATA 

As mentioned before, the Two-Way ANOVA interface features its own, independent file management options to 

save and load the data matrix along with the Alpha parameter. 

To save the current data, select the Save option from the File menu in the Two-Way ANOVA Window: 

 

The user is then prompted to select the file name and the folder in which to save the .2ra file. 

On the other hand, to load a data file, select the Load option from the File menu in the Two-Way ANOVA Window: 

 

The user is then prompted to select the .2ra file to be loaded. 

OUTPUT 

ANOVA TABLES 

An ANOVA table is always the main result of an ANOVA analysis. A standard ANOVA table is summarized below: 

Variation Source 
Degrees of 
Freedom 

Sum of Squares Mean Square f 
F_max 

(rejection region limit) 

Factor A I-1 SSA MSA MSA  / MSE        (   )(   ) 

Factor B J-1 SSB MSB MSB / MSE        (   )(   ) 

Error (I-1)(J-1) SSE MSE   

Total IJ-1 SST    

Refer to the Two-Way ANOVA Introduction section for information regarding the contents of the table. 

 

 

 

 

 

 



MAIN RESULTS 

The main results after running the Two-Way ANOVA analysis are two statements regarding the rejection or 

acceptance of the null hypotheses, along with an ANOVA table: 

 

  
 

In the image shown above, the rejection of both hypotheses is explicitly stated. 

 

TUKEY RESULTS 

For every rejected null hypothesis, a Tukey procedure will be run with respect to the corresponding factor (A or B). 

Then, a table will show the Tukey groupings with respect to that specific factor. The image below is an example of 

a Tukey analysis with respect to Factor A: 

 

The Grouping and Series columns contain the most useful information from the Tukey table. If two series have a 

Grouping letter in common, they are NOT significantly different with significance level  . In the example above, 

series A5 and A4 aren’t significantly different, since they both contain the letter A in their Grouping. Meanwhile, 

series A1 is significantly different from every other series, given that the grouping letter C doesn’t appear 

anywhere else. 

Refer to the Tukey Procedure section for more information on the meaning of these results. 

   



DATA ANALYSIS 

SINGLE SERIES ANALYSIS 

As the name suggests, one particular series is the input for this type of analysis. No values are generated, so 2R 

Data only focuses on the calculation of statistics and goodness-of-fit indicators associated with the selected series. 

In order to run a Single Series Analysis, the user must navigate through the Analysis menu and select the Single 

Series option from the Data Analysis submenu: 

 

The user then has to select the series to be analyzed from a combo box and left-click over the OK button to start 

the process: 

 

Results are shown in three separate tabs: Normalized Hist., Cumulative Hist. and Statistics. Refer to the 

Normalized and Cumulative Histograms and Statistics sections for more information on how to interpret those 

results. 

 

CORRELATION ANALYSIS 

The correlation analysis is a 2-variable analysis that tests for linearity and dependence of one variable with respect 

to another. To run this algorithm, a user must navigate through the Analysis menu and select the Correlation 

option from the Data Analysis submenu: 

 

A new dialog will open with all the possible 2-variable permutations that can be analyzed: 

 

Warning: in this case, the order of the variables does matter. The results of the “y vs x” correlation analysis aren’t 

necessarily equal to the ones obtained in an “x vs y” correlation analysis. The variable to the left is the dependent 



variable, while the variable to the right is the independent variable. Consequently, 2R Data will try to express the 

dependent variable in terms of the independent variable in purely linear terms, which will be explained in the 

following sub-subsections. 

A typical result screen for this analysis type is shown below: 

 

In addition to a scatter plot with the dependent variable in the vertical axis and the independent variable in the 

horizontal axis, 2R Data shows the Covariance and the Correlation Coefficient between the two variables as well 

as the result from a linear regression and its corresponding Coefficient of Determination (R^2). 

 

CORRELATION COEFFICIENT 

The correlation coefficient is a single number between -1 and 1 that describes the dependence between two 

variables. The formula used to compute the correlation coefficient of two variables from experimental data is 

(Lane): 

 

When two variables are independent from each other, their correlation coefficient is equal to 0. On the other 

hand, if two variables are perfectly dependent, their correlation coefficient is equal to 1 (as one increases the 

other one also increases) or -1 (as one increases the other one decreases, and vice-versa). 

 

 

 

 



COVARIANCE 

The difference between the covariance and the correlation coefficient is that the latter is a normalized value, while 

the former is not. Hence, the correlation coefficient is more valuable when drawing conclusions, since the only 

meaningful characteristic of a covariance is its sign (positive or negative). A positive covariance indicates that as 

one variable increases the other one also increases, and a negative covariance indicates that as one variable 

increases the other one decreases (and vice-versa). Mathematically: 

   (   )  (√   ( )     ( ))      (   )  (PlanetMath) 

Where cov is covariance, corr is correlation, and var is variance. 

 

REGRESSION AND COEFFICIENT OF DETERMINATION 

Essentially, regression analysis attempts to measure the correspondence between the dependent and independent 

variables, thereby establishing the latter's predictive value. The proportion of unexplained variations is termed 

the coefficient of determination. (Answers.com) 

The coefficient of determination measures how good the estimated regression equation is, designated as R
2
 (read 

as R-squared). The higher the R-squared, the more confidence one can have in the equation. Statistically, the 

coefficient of determination represents the proportion of the total variation in the y variable that is explained by 

the regression equation. It has the range of values between 0 and 1, where 1 is the ideal value (AllBusiness). It is 

computed as: 

     
∑(    ) 

∑(   ̅ ) 
 

Being   the real dataset and    the set of values predicted by the regression equation. 

REGRESSION ANALYSIS 

The regression analysis performed by 2R Data is exclusively a 2-variable analysis, although some software packages 

are capable of running regressions with 3 or more variables. Its objective is to find an equation that explains one 

variable in terms of another variable in a reliable way. To run this algorithm, the user must navigate through the 

Analysis menu and select the Regression option from the Data Analysis submenu: 

 

A new dialog will open with all the possible 2-variable permutations that can be analyzed: 

 



Warning: in this case, the order of the variables does matter. The results of the “y vs x” regression analysis aren’t 

necessarily equal to the ones obtained in an “x vs y” regression analysis. The variable to the left is the dependent 

variable, while the variable to the right is the independent variable. Consequently, 2R Data will try to express the 

dependent variable in terms of the independent variable. 

A typical result screen for this analysis type is shown below: 

 

The result contains a scatter plot with the dependent variable in the vertical axis and the independent variable in 

the horizontal axis and two different tables: one with all the calculated regression equations ranked by coefficient 

of determination and another one that displays the values of the parameters associated with the regression 

selected in the first table. Additionally, the selected regression is drawn on top of the scatter plot (red curve). 

REGRESSION AND COEFFICIENT OF DETERMINATION 

Essentially, regression analysis attempts to measure the correspondence between the dependent and independent 

variables, thereby establishing the latter's predictive value. The proportion of unexplained variations is termed 

the coefficient of determination. (Answers.com) 

The coefficient of determination measures how good the estimated regression equation is, designated as R
2
 (read 

as R-squared). The higher the R-squared, the more confidence one can have in the equation. Statistically, the 

coefficient of determination represents the proportion of the total variation in the y variable that is explained by 

the regression equation. It has the range of values between 0 and 1, where 1 is the ideal value (AllBusiness). It is 

computed as: 
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Being    is the real dataset and   the set of values predicted by the regression equation. 



PARAMETERS AND THEIR STATISTICS 

Although the coefficient of determination is a good statistic for ranking purposes, the acceptance of a regression 

should also take the parameters and their related errors into account. The following table explains the different 

statistics that 2R Data calculates for each estimated parameter in a regression equation: 

Statistic Description 

Std. Error Standard deviation estimate of the best estimate of the parameter. 
t-value A one sample t-test is a hypothesis test for answering questions about the mean where the 

data is a random sample of independent observations from an underlying normal 
distribution N(µ,   ), where    is unknown. 
 
The null hypothesis for the one sample t-test is: 
H0: µ = µ0, where µ0 is known. 
 
That is, the sample has been drawn from a population of given mean and unknown variance 
(which therefore has to be estimated from the sample). 
 
This null hypothesis, H0 is tested against one of the following alternative hypotheses, 
depending on the question posed: 
H1: µ is not equal to µ  
H1: µ > µ  
H1: µ < µ 
(McColl) 
 
The t-value for acceptance depends on the confidence level of the test (see table below). If 
the calculated t is greater than value shown, reject the null hypothesis: (ANU) 

 

 



p-value The probability value (p-value) of a statistical hypothesis test is the probability of getting a 
value of the test statistic as extreme as or more extreme than that observed by chance 
alone, if the null hypothesis H0, is true. 
 
It is the probability of wrongly rejecting the null hypothesis if it is in fact true. 
 
It is equal to the significance level of the test for which we would only just reject the null 
hypothesis. The p-value is compared with the actual significance level of our test and, if it is 
smaller, the result is significant. That is, if the null hypothesis were to be rejected at the 5% 
significance level, this would be reported as "p < 0.05". 
 
Small p-values suggest that the null hypothesis is unlikely to be true. The smaller it is, the 
more convincing is the rejection of the null hypothesis. It indicates the strength of evidence 
for say, rejecting the null hypothesis H0, rather than simply concluding "Reject H0' or "Do not 
reject H0". 
(McColl) 

FILTERS 

2R Data tries out over 6,000 different equation forms during a regression analysis. If a user is interested in a 

particular subset of such equation forms, he can filter out unwanted types of regressions by using the View menu 

and deselecting the appropriate checkboxes. 

 

The table containing regressions ranked by coefficient of determination (R
2
) will only show equations of the types 

that are ticked in the View menu. 

TYPES OF EQUATION FORMS 

The table shown below summarizes the characteristics of each of the equation forms that can be filtered out 

through 2R Data’s View menu. 

Equation Type Corresponding Equation Forms 

Complex Linear Linear combinations with 4 or more unknown coefficients (including the constant term). 
 
Example: 
a+b*x

-1.5
+c*e

-1.5*x
+d*ln(x) 

where x is the independent variable and a, b, c, and d are unknown parameters. 
 

Non-Linear Any equation in which an unknown parameter plays a role different from being a 
coefficient in a linear combination. 
 
Example: 
a*e

b*x
 

where x is the independent variable and a and b are unknown parameters. Clearly, b is 
playing a role different from a linear coefficient, such as a. 



Polyexponential ∑       

 

 

where x is the independent variable and ai are unknown coefficients. 
 
Example: 
a+b*e

x
+c*e

2*x
+d*e

3*x 

where x is the independent variable and a, b, c, and d are unknown parameters. 
 

Polylogarithmic ∑   ,   ( )- 

 

 

where x is the independent variable and ai are unknown coefficients. 
 
Example: 
a+b*ln(x)+c*[ln(x)]

2
+d*[ln(x)]

3 

where x is the independent variable and a, b, c, and d are unknown parameters. 
 

Polynomial ∑     

 

 

where x is the independent variable and ai are unknown coefficients. 
 
Example: 
a+b*x+c*x

2
+d*x

3 

where x is the independent variable and a, b, c, and d are unknown parameters. 
 

Simple Linear Linear combinations with less than 4 unknown coefficients (including the constant term). 
 
Example: 
a+b*e

-1.5*x  

where x is the independent variable and a and b are unknown parameters. 
 

 



DATA MANIPULATION 

BOOTSTRAP ANALYSIS 

Unlike the Single Series analysis, the Bootstrap algorithm does involve generating values before calculating 

statistics and goodness-of-fit indicators. Bootstrapping is a resampling method. The idea: We have just one 

dataset. When we compute a statistic on the data, we only know that one statistic -- we don't see how variable 

that statistic is. The bootstrap creates a large number of datasets that we might have seen and computes the 

statistic on each of these datasets. Thus we get a distribution of the statistic. Key is the strategy to create data that 

"we might have seen" (BurnsStatistics). 

The algorithm that 2R Data runs for bootstrapping is summarized below: (let N be the number of bootstrap 

iterations to be executed on the dataset and let M be the number of data values in the dataset) 

 

Given that every bootstrap iteration is completely independent from the rest, 2R Data can speed up this processor-

intensive algorithm with the use of a thread pool, which can execute various iterations in parallel if more than one 

CPU core is present. 



Important: in 2R Data’s Bootstrap analysis, the mean of the series is the statistic being studied, as can be seen in 

the flow chart above. Therefore, all the resulting statistics and goodness-of-fit indicators make reference to the 

mean of the dataset and not the dataset itself. 

To begin a Bootstrap analysis of the mean of a data series, the user must navigate through the Analysis menu and 

select the Bootstrap option from the Data Manipulation submenu: 

 

Afterwards, the user is prompted to select the appropriate series and enter the number of bootstrap iterations to 

be executed, N, before the algorithm begins. 

Results are shown in three separate tabs: Normalized Hist., Cumulative Hist. and Statistics. Refer to the 

Normalized and Cumulative Histograms and Statistics sections for more information on how to interpret those 

results. 

 

CLUSTERING ANALYSIS 

In the words of (Dipartimento Di Elettronica E Informazione): 

Clustering can be considered the most important unsupervised learning problem; so, as every other problem of 

this kind, it deals with finding a structure in a collection of unlabeled data. A loose definition of clustering could be 

“the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a 

collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to other 

clusters. We can show this with a simple graphical example: 

 



INTRODUCTION TO CLUSTERING ALGORITHMS 

Clustering algorithms can be classified into 4 different groups (Dipartimento Di Elettronica E Informazione): 

1. Exclusive clustering: if a certain datum belongs to a definite cluster then it could not be included in 

another cluster. 

2. Overlapping clustering: uses fuzzy sets to cluster data, so that each point may belong to two or more 

clusters with different degrees of membership. 

3. Hierarchical clustering: based on the union between the two nearest clusters. The beginning condition is 

realized by setting every datum as a cluster. After a few iterations it reaches the final clusters wanted. 

4. Probabilistic clustering: a completely probabilistic approach. 

An important step in any clustering is to select a distance measure, which will determine how the similarity of two 

elements is calculated. This will influence the shape of the clusters, as some elements may be close to one another 

according to one distance and farther away according to another (Temporis). Common distance measures include 

the Euclidean distance, Manhattan distance, Mahalanobis distance, and Hamming distance. In the case of 2R Soft, 

Euclidean distance is always used as the distance measure during clustering analysis. 

EUCLIDEAN DISTANCE 

If   (           ) and   (           ), the Euclidean distance from a to b is defined as: 

 (   )  √(     )
  (     )

    (     )
  

Geometrically, the result is equal to the length of the segment joining a and b. 

 

DENDROGRAM / HIERARCHICAL CLUSTERING 

Given a set of N items to be clustered and an N*N distance (or similarity) matrix, the basic process of hierarchical 

clustering defined by (Johnson 1967) is:  

1. Start by assigning each item to a cluster, so that if you have N items, you now have N clusters, each 

containing just one item. Let the distances (similarities) between the clusters the same as the distances 

(similarities) between the items they contain. 

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have 

one cluster less. 

3. Compute distances (similarities) between the new cluster and each of the old clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. 

Step 3 can be done in different ways, which is what distinguishes the various clustering algorithms (single linkage, 

complete linkage, etc) from each other. 

Jump to the Running a Clustering Analysis in 2R Soft section to learn how to run Hierarchical Clustering algorithms 

on 2R Data datasets. 

 

 



K-MEANS CLUSTERING 

K-Means is an exclusive clustering algorithm for partitioning N data points into K disjoint subsets Sj containing Nj 

data points so as to minimize the sum-of-squares criterion (Weisstein): 

  ∑ ∑|     |
 

    

 

   

 

Where    is a vector representing the nth data point and    is the geometric centroid (average of all coordinates) 

of the data points in Sj. 

The algorithm consists on a simple re-estimation procedure as follows (Weisstein). Initially, the data points are 

assigned at random to the K sets. 

 For step 1, the centroid is computed for each set. 

 In step 2, every point is re-assigned to the cluster whose centroid is closest to that point. 

 These two steps are alternated until a stopping criterion is met, i.e., when there is no further change in 

the assignment of the data points. 

Jump to the Running a Clustering Analysis in 2R Soft section to learn how to run the K-means algorithm on 2R Data 

datasets. 

 

K-MEDOIDS CLUSTERING 

K-medoids is a clustering algorithm that is very much like k-means. The main difference between the two 

algorithms is the cluster center they use. K-means uses the average of all instances in a cluster, while k-medoids 

uses the instance that is the closest to the mean, i.e. the most 'central' point of the cluster. Using an actual point of 

the data set to cluster makes the k-medoids algorithm more robust to outliers than the k-means algorithm. (Abeel) 

Jump to the Running a Clustering Analysis in 2R Soft section to learn how to run the K-medoids algorithm on 2R 

Data datasets. 

 

SPECTRAL CLUSTERING 

Note: This sub-section is based on (Nugent and Stanberry). Refer to that source for a more in-depth treatment of 

the topic. 

Spectral clustering algorithms partition points using eigenvectors of matrices derived from the data. They obtain a 

data representation in the low-dimensional space that can be easily clustered and a variety of methods exist that 

use the eigenvectors differently. 

2R Soft uses the NJW (Ng, Jordan, and Weiss) algorithm. 

 

 



NJW ALGORITHM 

Motivation: Given a set of points    *       +    , we would like to cluster them into k subsets: 

1. Form the affinity matrix        by applying a kernel (Gaussian, Inverse Quadratic, etc) to a measure of 

similarity: 

With Gaussian Kernel: 

    {  
 ‖     ‖

 

   

          
                                                    

With Inverse Quadratic Kernel: 

    

{
 

 
 

√‖     ‖
 
  

          

                                                    

In both cases, ‖     ‖ stands for a basic measure of similarity. If ‖     ‖ is large, points    and    are 

said to be “closer” to each other in accordance with the distance measure being used. In 2R Soft, 

Euclidean Distance is the unit measure employed, so the result of ‖     ‖ is taken to be the INVERSE 

of that distance. More distance between two points leads to a lower ‖     ‖ (similarity). 

2. Define D a diagonal matrix whose (i,i) element is the sum of A’s row i: 

 

3. Form the matrix L, where: 

 

4. Stack the k largest eigenvectors of L to form the columns of the new matrix X. 

5. Renormalize each of X’s rows to have unit length. The result of this operation is matrix Y: 

 

6. Cluster the rows of matrix Y as points in R 
k
 via K-means. 

7. For every i, assign point    to cluster j iff row i of Y was assigned to cluster j. 

 

 

 

 



The answer to “If we eventually use K-means, why not just apply K-means to the original data?” is that this method 

allows us to cluster non-convex regions: 

 

Jump to the Running a Clustering Analysis in 2R Soft section to learn how to run the NJW Spectral Clustering 

algorithm on 2R Data datasets. 

 



RUNNING A CLUSTERING ANALYSIS IN 2R SOFT 

To begin a clustering analysis in 2R Data, the user must navigate through the Analysis menu and select the 

Clustering option from the Data Manipulation submenu: 

 

INPUT 

The input window’s options vary depending on the algorithm to be used and on whether or not the user plans to 

perform a multi-level clustering. This section covers each region of the window separately. 

CLUSTERING DIMENSIONS 

 

In this region of the input window, the user must select the data series that will be part of the clustering analysis. 

Each selected series will act as a unique space dimension. In the example above, series S2 and S3 are selected, so 

point xi will be taken to be a 2-dimensional coordinate (S2i, S3i) for every row “i” of data. 

 

ALGORITHM 

 

The algorithm dictates how clustering is to be carried out and the type of results that will be shown. Click on the 

name of a specific algorithm to be redirected to the section of this document that explains the logic behind it: 

 Dendrogram/Hierarchical: a dendrogram is generated as the final result. Jump to the Dendrogram section 

for more information. 

 K-Means, K-Medoids and Spectral: a tree structure will show the resulting arrangement of clusters and 

their members. The options to analyze a specific cluster and to graph a 2-dimensional or 1-dimensional 

cluster are also provided. Jump to the Tree View section for more information. 



PARAMETERS (FOR K-MEANS, K-MEDOIDS AND SPECTRAL) 

When running a one-level clustering analysis, meaning that clusters are only calculated from the source data and 

no sub-clusters within those clusters are to be calculated, a single parameter has to be entered: 

 

 # Clusters: the number of clusters that the user wants to obtain from the clustering process. 

MULTI-LEVEL CLUSTERING 

If sub-clusters within clusters are to be calculated, the user will have to activate the Multi-Level Clustering 

checkbox. This will require additional information to be entered in the Multi-Level region of the clustering 

window: 

 

 Unsupervised Multi-Level: for each calculated cluster, sub-clusters will be found until a point is reached 

where the sub-sub-…-sub-cluster cannot be divided into #Clusters clusters (5 in the screen above). 

Therefore, for the example above, a tree of clusters is obtained in which each “node” (cluster) has either 0 

or 5 “nodes” (clusters) as childs. 

 

 Predefined # of Levels: this type of multi-level clustering stops after N levels of clusters are found (limited 

depth of search). For each calculated cluster, sub-clusters will be found until a point is reached where the 

sub-sub-…-sub-cluster cannot be divided into #Clusters clusters (5 in the screen above) or until N levels of 

clusters have already been calculated. Therefore, for the example above, a tree of clusters is obtained in 

which each “node” (cluster) has either 0 or 5 “nodes” (clusters) as childs, and the maximum depth of 

search is of sub-sub-clusters with respect to the original clusters. 



KERNEL (SPECTRAL ONLY) 

The Kernel region is displayed when the Spectral algorithm is selected. 

 

For information on what the Kernel does and on the effects of “sigma” and “c”, refer to the Spectral Clustering 

section. 

OUTPUT 

DENDROGRAM (HIERARCHICAL ONLY) 

When a hierarchical clustering analysis is performed, a dendrogram is the end result. A new window will become 

visible with a variety of options. For option changes to take effect, the “Update” button must be used. 

 



 Clustering algorithm: this setting dictates how distances are computed on step 3 of the clustering 

algorithm. 

 Precision: the amount of decimal places to use in the axis. 

 Tree 

o Tree Orientation: defines the direction in which the dendrogram is generated. 

o Show bands: when selected, bands are displayed to indicate the level of heterogeneity inside the 

clusters. 

 Nodes 

o Nodes size: the size of the dendrogram terminations. 

o Show labels: the numerical value of each termination is shown when this is selected. 

o Labels Orientation: the direction in which the labels are to be displayed. 

 Axis 

o Show axis: the value axis is shown when this is selected. 

o Show labels: the axis is complemented with labels when this is enabled. 

TREE VIEW (FOR K-MEANS, K-MEDOIDS AND SPECTRAL) 

After a non-hierarchical clustering analysis is run, the results are displayed in the form of a tree view: 

 

Nodes with a folder icon (clusters and members) can be expanded and contracted by double-clicking on them. 

Every cluster contains: 

 The average distance between pairs of data points inside the cluster (<dist.>). 

 A Members folder with a list of all the data points that comprise the cluster. 

 A list of sub-clusters when applicable (if running a multi-level clustering). 



The tree view provides 4 important options. They are applied on the selected cluster only. The selected cluster is 

the one highlighted by the user by clicking on it. 

 Graph Real: a graph of the selected cluster’s data points is shown (only for 2-D and 1-D analyses). The 

members of a cluster are represented with a unique shape and color. 

 
 

 Graph Fictitious: a graph of the selected cluster’s sub-clusters is generated, where each sub-cluster is 

represented as a single data point corresponding to its geometric centroid. Every sub-cluster’s geometric 

centroid is graphed with a unique shape and color. 

 
 Analyze Real: the selected cluster’s data points are exported to a new 2R Data window for further 

analysis. 

 Analyze Fictitious: the selected cluster’s sub-clusters are exported to a new 2R Data window for further 

analysis, where each sub-cluster is represented as a single data point corresponding to its geometric 

centroid. 



PCA ANALYSIS (PRINCIPAL COMPONENT ANALYSIS) 

PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight their similarities 

and differences. Since patterns in data can be hard to find in data of high dimension, where the luxury of graphical 

representation is not available, PCA is a powerful tool for analyzing data. The other main advantage of PCA is that 

once you have found these patterns in the data, and you compress the data by reducing the number of 

dimensions, without much loss of information. (Smith) 

The PCA algorithm is comprised by the following steps: 

1. Arrange the data in a matrix, where each column represents a data dimension (a separate dataset, such 

as a sensor’s readings) and each row represents a data value for each dimension. Clearly, all the 

dimensions must contain the same amount of observations. 

2. Subtract the mean across each dimension. For example, the mean of the values in the nth column is 

calculated and then subtracted from each of the values in that same column. 

3. Calculate the covariance matrix, such that the cell (i,j) contains the covariance between dimension i and 

dimension j. The resulting covariance matrix must be symmetric 

4. Calculate the eigenvalues and eigenvectors of the covariance matrix. 

Let A be a linear transformation represented by a matrix A. If there is a vector        such that       for 

some scalar  , then   is called the eigenvalue of A with corresponding (right) eigenvector X. (Weisstein4) 

5. Choose components and form a feature vector. Once eigenvectors are found from the covariance matrix, 

the next step is to order them by eigenvalue, highest to lowest. This gives you the components in order of 

significance. Now, if you like, you can decide to ignore the components of lesser significance. You do lose 

some information, but if the eigenvalues are small, you don’t lose much. If you leave out some 

components, the final data set will have fewer dimensions than the original. To be precise, if you originally 

have _ dimensions in your data, and so you calculate _ eigenvectors and eigenvalues, and then you choose 

only the first { eigenvectors, then the final data set has only { dimensions. What needs to be done now is you 

need to form a feature vector, which is just a fancy name for a matrix of vectors. This is constructed by 

taking the eigenvectors that you want to keep from the list of eigenvectors, and forming a matrix with 

these eigenvectors in the columns. (Smith) 

              (                     ) 

 

6. Calculate the transformed values.  

                                         

RowFeatureVector is the FeatureVector transposed, while RowDataAdjust is the mean-adjusted data 

transposed. (Smith) 

The final data obtained gives the original data solely in terms of the eigenvectors that were chosen in the 

previous step. If the amount of dimensions of the transformed data is less than the original amount of 

dimensions, some data is lost, but the most significant features are retained in the new dimensions. 

 

 



PCA IN 2R DATA 

To start a PCA analysis in 2R Data, the user must have declared two or more data series with the same amount of 

data points. Then, the PCA option under the Data Manipulation submenu of the Analysis menu can be invoked: 

 

A new screen will appear for the user to indicate the series to be included in the analysis, the matrix to be used for 

the analysis, and the criteria that should be used for selecting the eigenvalues: 

 

The first two inputs (series to analyze and analysis matrix) are self-explanatory. It should be noted that the 

covariance matrix is the default analysis matrix. The eigenvalue criteria are explained below: 

Criterion Explanation 

Eigenvalues greater than 1 In essence this is like saying that, unless a factor extracts at least as much as 

the equivalent of one original variable, we drop it. (StatSoft) 

Cumulative percentage The user enters the minimum percentage of the data that should be 
explained by the new dimensions. Thus, 2R Data retains eigenvalues until 
the cumulative loading percentage is greater than or equal to such 
percentage. 

Predefined number of eigenvalues If the user expects a specific amount of dimensions for the transformed 
data, 2R Data will retain that number of eigenvalues during the analysis. 

 

 

 

 

 

 

 

 



After setting up the PCA analysis and pressing the Start button, the user is presented with a variety of results: 

 

 

 

 

Note: The retained eigenvalues are highlighted with yellow in the visual interface. 

 

 

 

 

 

 



Result Explanation 

Correlation Matrix The correlation matrix, such that the cell (i,j) contains the correlation between 
dimension i and dimension j 

Covariance Matrix The covariance matrix, such that the cell (i,j) contains the covariance between 
dimension i and dimension j. 

Eigenvalues Eigenvalues of the analysis matrix (covariance or correlation matrix, depending on 
what the user chose in the PCA analysis settings screen). 

Eigenvectors Eigenvectors of the analysis matrix (covariance or correlation matrix, depending on 
what the user chose in the PCA analysis settings screen). 

Original Loading Factors Correlations between observed variables and factors. The unrotated factor loading 
matrix is the matrix product of the eigenvector with the square root of the eigenvalue 
matrix. (Pickering) 

New Loading Factors Loading factors after a varimax rotation. Varimax maximises the variance of loadings 
within factors across variables (simplifies factors: some variables have high loadings, 
others have low). (Pickering) 

Transformed Data Data points in the new dimensions, where PCAN is associated with the nth most 
significant eigenvalue.  

SPE Let      denote a sample vector of m sensors. Assuming that there are N samples 
for each sensor, a data matrix        is composed with each row representing a 
sample. The matrix X is scaled to zero mean for covariance-based PCA and, in 
addition, to unit variance for correlation-based PCA. The matrix X can be decomposed 
into a score matrix T and a loading matrix P by either the NIPALS or the singular value 
decomposition (SVD) algorithm: (Qin 2003) 

 
 
The SPE index measures the projection of the sample vector on the residual subspace: 
(Qin 2003) 
 

 
 
The process is considered normal if        where    denotes the upper control 
limit for SPE with a significance level  . (Qin 2003) 

 

 
T

2
 Hotelling’s T

2
 statistic measures variations in the PCS: (Qin 2003) 

,    
 

Under the condition that the process is normal and the data follow a multivariate 
normal distribution, the T2 statistic is related to an F distribution considering that the 
population mean and covariance are estimated from data: (Qin 2003) 

 
 

where Fl;N-l is an F distribution with l and N-l degrees of freedom. For a given 
significance level   the process is considered normal if: (Qin 2003) 

 
Bounds Upper control limits for SPE and T

2
 with different significance levels. 



FACTORS VS COMPONENTS 

 

2R Data performs Factor Analysis in parallel with the PCA Analysis. The differences between factors and 

components are: (Pickering) 

 Factor Analysis (FA) gives factors; PCA yields components. 

 Same overall stages. 

 Differ in the variance that is analyzed. 

 PCA: all variance of observed variables (shared; unique; and error) is analyzed. 

 FA: only shared variance is analyzed. 

 Theoretically, factors are the underlying (latent) variables that CAUSE the covariation between observed 

variables. The labels for factors are attempts to name these causal latent variables. 

 Components are just empirically determined aggregates of the variables without presumed theory. Labels 

are used but they are just a short-hand for the component. 

 

TIME SERIES 

Time series are used to keep record of the evolution of a specific measure as time passes by. Their analysis has 

been the topic of research for a long time and has resulted in entire books dedicated to that topic. Given that 2R 

Soft aims for simplicity, 2R Data only supports fixed-interval time series, meaning that the time elapsed 

between one measurement and its adjacent values is always the same. 

AUTO-CORRELATION 

THEORY 

When the correlation is calculated between a series and a lagged version of itself it is called autocorrelation. A 

high correlation is likely to indicate a periodicity in the signal of the corresponding time duration.  

The correlation coefficient at lag k of a series x0, x1, x2,....xN-1 is normally given as (Bourke 1996):  

 

Where mx is the mean of the series. When the term i+k extends past the length of the series N two options are 

available. The series can either be considered to be 0 or in the usual Fourier approach the series is assumed to 

wrap, in this case the index into the series is (i+k) mod N. The denominator in the expression above serves to 

normalize the correlation coefficients such that -1 <= autocorr(k) <= 1, the bounds indicating maximum correlation 

and 0 indicating no correlation. A high negative correlation indicates a high correlation but of the inverse of the 

lagged series (Bourke 1996). 



INPUT 

To begin an auto-correlation analysis, the user must navigate through the Analysis menu and select the Auto-

Correlation option from the Time Series submenu: 

 

A new window will pop up: 

 

 Time Series: the fixed-interval time series that will be analyzed. 

 Maximum Delay: the maximum lag to be used for the analysis in terms of measurement intervals. For 

example, if the value entered is 3, the auto-correlation function will test lag values of -3,-2,-1,0,1,2, and 3 

to calculate the desired correlogram (or auto-correlation series). 

 No Data Wrapping: as mentioned in the Theory section, the lagged series will go past the maximum term 

in the original series. If no data wrapping is used, the value for all points beyond the maximum term will 

be taken to be zero (0). 

 Circular Series: as mentioned in the Theory section, the lagged series will go past the maximum term in 

the original series. If a circular series is used, the series becomes a periodic series with period N, where N 

is the length of the original series. Thus, it will start over right after the maximum term. 

 

 

 

 

 

 



OUTPUT 

2R Data will show 3 results when the calculations are finished: 

 A table with the auto-correlation value, r, for every amount of delay. This table can be exported to Excel. 

 
 A graph showing the original time series. 

 
 A correlogram (or auto-correlation series) graphically showing the auto-correlation values as a function of 

lag. The maximum and minimum auto-correlations are explicitly pointed out below the correlogram. 

 

 

 

 

 

 

 



CROSS-CORRELATION 

THEORY 

Cross correlation is a standard method of estimating the degree to which two series are correlated. Consider two 

series x(i) and y(i) where i=0,1,2...N-1. The cross correlation, r, at delay d is defined as (Bourke 1996):  

 

Where mx and my are the means of the corresponding series. If the above is computed for all delays d=0,1,2,...N-1, 

then it results in a cross correlation series of twice the length as the original series (Bourke 1996). 

There is the issue of what to do when the index into the series is less than 0 or greater than or equal to the number 

of points (i-d < 0 or i-d >= N). The most common approaches are to either ignore these points or assuming the 

series x and y are zero for i < 0 and i >= N. In many signal processing applications the series is assumed to be 

circular in which case the out of range indexes are "wrapped" back within range, ie: x(-1) = x(N-1), x(N+5) = x(5) 

(Bourke 1996).  

The range of delays d and thus the length of the cross correlation series can be less than N, for example the aim 

may be to test correlation at short delays only. The denominator in the expression above serves to normalize the 

correlation coefficients such that -1 <= r(d) <= 1, the bounds indicating maximum correlation and 0 indicating no 

correlation. A high negative correlation indicates a high correlation but of the inverse of one of the series (Bourke 

1996).  

 

INPUT 

To begin a cross-correlation analysis, the user must navigate through the Analysis menu and select the Cross-

Correlation option from the Time Series submenu: 

 

 

 

 



A new window will pop up: 

 

 Time Series: the two fixed-interval time series that will be juxtaposed. 

 Maximum Delay: the maximum lag to be used for the analysis in terms of measurement intervals. For 

example, if the value entered is 3, the cross-correlation function will test lag values of -3,-2,-1,0,1,2, and 3 

to calculate the desired cross-correlation series. 

 No Data Wrapping: as mentioned in the Theory section, the lagged series will go past the maximum term 

in the original series. If no data wrapping is used, the value for all points beyond the maximum term will 

be taken to be zero (0). 

 Circular Series: as mentioned in the Theory section, the lagged series will go past the maximum term in 

the original series. If a circular series is used, the series becomes a periodic series with period N, where N 

is the length of the original series. Thus, it will start over right after the maximum term. 

 

OUTPUT 

2R Data will show 3 results when the calculations are finished: 

 A table with the cross-correlation value, r, for every amount of delay. This table can be exported to Excel. 

 
 

 

 

 

 

 



 Graphs showing the original time series. 

 
 A cross-correlation plot graphically showing the cross-correlation values as a function of lag. The 

maximum and minimum cross-correlations are explicitly pointed out below the cross-correlation plot. 

 

 

 

FOURIER TRANSFORM 

THEORY 

Note: this section is based on (Handley 2007). Refer to that text for a more in-depth treatment of the topic. 

FOURIER SERIES 

Any periodic function can be expressed as the sum of a series of sines and cosines (of varying amplitudes). A 

function f(x) can be expressed as a series of sines and cosines: 

 

Where: 

, , ,  

 

 



FOURIER TRANSFORM 

Fourier Series can be generalized to complex numbers, and further generalized to derive the Fourier Transform. 

Forward Fourier Transform: 

,  

Fourier Transform maps a time series (e.g. audio samples) into the series of frequencies (their amplitudes and 

phases) that composed the time series. 

If we wish to find the frequency spectrum of a function that we have sampled, the continuous Fourier Transform is 

not so useful. We need a discrete version: 

Discrete Forward Fourier Transform: 

, so the complex numbers f0 … fN are transformed into complex numbers F0 … Fn. 

INTERPRETATION 

 The magnitude of the complex number for a DFT component is the power at that frequency. 

 

INPUT 

To begin a Fourier Transform analysis, the user must select the Fourier Transform option found under the Time 

Series submenu of the Analysis menu: 

 

The program then asks the user to select the series that is to undergo a Fourier analysis: 

 

 Time Series: the fixed-interval time series that will be analyzed. 

 



OUTPUT 

In the results, the variable f_s is used to represent the sampling frequency (samples per unit of time), which 

should be known by the user. The calculated series covers frequencies between 0 and f_s. 

 The first result is a table showing the real and imaginary components for the different frequencies, along 

with the associated intensities (img^2+real^2). This data can be easily exported to Excel for further 

analysis. 

 

 4 graphs are also generated: one showing the original series, and the other three showing the real 

components, imaginary components, and associated intensities of the various frequencies: 

 

  

 

 

 

 



MOVING AVERAGE 

THEORY 

Inherent in the collection of data taken over time is some form of random variation. There exist methods for 

reducing of canceling the effect due to random variation. An often-used technique in industry is "smoothing". This 

technique, when properly applied, reveals more clearly the underlying trend, seasonal and cyclic components 

(SEMATECH). Moving Average is a popular smoothing method. It computes the mean of successive smaller sets of 

past data. The general expression for the moving average is:  

Mt = [ Xt + Xt-1 + ... + Xt-N+1] / N, where N is the size of the smaller sets of past data. 

Here’s an example of a Moving Average when N=3: 

Point Value MA 

1 9 9 

2 8 8.5 

3 9 8.67 

4 12 9.67 

5 9 10.00 

6 12 11.00 

7 11 10.67 

8 7 10.00 

9 13 10.33 

10 9 9.67 

11 11 11.00 

12 10 10.00 

E.g. M6=(X6+X5+X4)/3=(12+9+12)/3=33/3=11 

Note that the first two data points don’t have 2 values before them to take into account, so they only consider the 

average of the available values. 

 

INPUT 

To begin a Moving Average analysis, the user must select the Moving Average option found under the Time Series 

submenu of the Analysis menu: 

 



The user is prompted for some information: 

 

 Time Series: the fixed-interval time series that will be analyzed. 

 Averaging Period: the size of the smaller sets of past data. Refer to the Theory section for details. 

 Initial Skip Period: the point from which the moving average series will begin. E.g. If the initial skip period 

is X, the moving average series starts at t=X. 

 

OUTPUT 

 A table shows the moving average value for every point in the analysis range. This data can be easily 

exported to Excel for further analysis. 

 
 The results are also plotted. The moving average is shown in BLUE, while the original series is displayed in 

RED. Note that the random variations are reduced in the moving average series. 

 



EXAMPLES 

EXAMPLE 1 – INTERNATIONAL EXAM – SINGLE SERIES ANALYSIS 

An organization in charge of an international exam, such as the TOEFL or the GRE, has received all of the candidate 

scores for one season and wants to define the different grade bounds to be able to send the score reports to the 

test-takers. The final result for each candidate is expressed as a numeric value between 1 and 9 and the 

organization has decided that, given the size of the population, the fairest method to define the grade bounds is to 

fit a normal distribution to the sample and take predefined percentiles as the grade bounds. 

The exam scores range from 0 to 430 and the sample data can be found in the Example 1 data model. 

The results of a single-series analysis over the Example 1 data model are shown below: 

 

The best-fit normal distribution (red curve in graphs above) has a mean score of 295.69 and standard deviation of 

76.93. Consequently, the grade bounds can now be calculated: 

Final Grade Grade Bound Description Lower Bound Upper Bound 

1 Lower than 20
th

 percentile 0 231 
2 20

th
 percentile to 30

th
 percentile 231 255 

3 30
th

 percentile to 40
th

 percentile 255 276 
4 40

th
 percentile to 50

th
 percentile 276 296 

5 50
th

 percentile to 60
th

 percentile 296 315 
6 60

th
 percentile to 70

th
 percentile 315 336 

7 70
th

 percentile to 80
th

 percentile 336 360 
8 80

th
 percentile to 90

th
 percentile 360 394 

9 90
th

 percentile or higher 394 430 

 

 

EXAMPLE 2 – ADMISSIONS OFFICE - BOOTSTRAPPING 

A university’s admissions office wants to calculate a confidence interval with      for the amount of students 

that send applications to enter the Civil Engineering major each semester. The Civil Engineering Faculty opened 10 

years ago, so they only have 20 data points to carry out the analysis, which are included in the Example 2 data 



model. After conducting a Bootstrap analysis with 10,000 iterations, the admissions office obtained the following 

results: 

 

The probability distribution with the best (lowest) Anderson-Darling statistic is a Gamma distribution with an alpha 

parameter of 991.58 and a lambda parameter of 11.83. Thus, a confidence interval with      is that between 

the 5
th

 percentile and the 95
th

 percentile of such distribution: 

Confidence Interval = [79, 88] applications per semester 

 

EXAMPLE 3 – INFLATION AND UNEMPLOYMENT RATES – CORRELATION 

According to the Phillips Curve, the rate of inflation and the unemployment rate follow an inverse relationship 

(when one is high the other one is low, and vice-versa). To test this theory in practice, a student has decided to 

analyze the correlation between the two macroeconomic measurements (unemployment and inflation) in 

Colombia with historic data from the past 10 years. The Example 3 data model contains such information. 

After running a correlation analysis over the Example 3 data model for inflation rate vs unemployment rate, the 

student obtained the results shown below: 

 



 

The correlation coefficient (0.411) indicates that there is a positive correlation between the two data series, which 

is exactly the opposite of what was expected. Such relation between inflation and unemployment rates isn’t linear, 

since the determination coefficient (R
2
) for the linear regression, 0.169, is nowhere near 1.0. Therefore, one can 

conclude that Colombia’s economy doesn’t hold true to what the Phillips Curve states, and that the relation 

between these two variables must be non-linear. 

 

 

 

EXAMPLE 4 – WORLD POPULATION - REGRESSION 

A student wants to estimate the global population by the year 2020 based on world population data from the past 

10 years. The Example 4 data model contains the input data for this estimate. 

The result of a regression analysis over the Example 4 model is shown below: 

 

 



The regression is carried out in the form “GLOBAL POP. vs YYYY”, taking into account that time is the independent 

variable and population is the dependent variable. According to the screenshot above, a second-degree polynomial 

regression fits the data with a determination coefficient (R
2
) of 1.0, so it can be used as the base regression for the 

subsequent analysis. Not only does the equation “GP=-75638459904.48+5469855.96*Y+17696.05*Y
2
” explain the 

dependence of global population with time; it also expresses a coherent behavior (always increasing, faster than 

linear, etc). 

To estimate the world population by the year 2020, one must replace “Y” for “2020” in the regression equation: 

GP(2020)=-75638459904.48+5469855.96*2020+17696.05*2020
2
 = 7,617,611,555 people 

 

 

 

 

 

EXAMPLE 5 – TEMPERATURE SENSORS - PCA 

A meteorologist has recollected historic temperature measurements with the help of 4 sensors spread along a 

small village. Given that temperature differs slightly within a specific geographic region, the meteorologist expects 

the 4 sensors to share around 80% of data in common and wants to be able to visualize the information in a 2-

dimensional plane with the minimum amount of data loss. The Example 5 data model contains the input data for 

this analysis expressed in the Celsius temperature scale. 

After restricting the PCA result to exactly 2 eigenvalues, the meteorologist obtained a new set of coordinates, 

PCA1 and PCA2: 

 

 



 

 

As the eigenvalues table shows, the 2 new dimensions have retained 91% of the original data, which is impressive 

taking into account that the original data had twice the amount of dimensions. Furthermore, the SPE and T
2
 graphs 

indicate that all the resulting data points are reliable, even with an alpha as high as 20%. 
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